
Linear Systems,  Black  Boxes, and Beyond 
 
Homework #1 (2010-2011) 
 
 
Q1:  Fourier transforms, derivatives, and integrals 
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Q2:  Fourier transforms and moments 
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Q3: The half-infinite cable (repeating indefinitely to the right) 
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This is to be viewed as a network of resistors and capacitors.  Calculate the impedance of the 
system (input applied across terminals at left) in terms of the impedances ( )F ω , 1( )G ω , and  

2 ( )G ω  for F, 1G , and 2G . 
 
Hint:  Let the composite system be H.  Note the following, and then write an equation for ( )H ω .  

 
 
 
 
 
 

 
 
Q4.  Boxcar smoothing 
 

Boxcar smoothing refers to convolution with the function ( )s t , where 
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its Fourier transform. What does it look like?  Is this a good way to smoothe? 
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