Linear Systems, Black Boxes, and Beyond

Homework \#2 (2010-2011), Answers
Here, rectangles with letters inside represent linear filters, and rectangles with a "+" inside represents summation.

Q1: The reason for the normalization in the definition of coherency:

Given x and y, signals whose spectra $P_{X}(\omega)$ and $P_{Y}(\omega)$ cross-spectrum $P_{X, Y}(\omega)$, and coherency $C_{X, Y}(\omega)$ are known, find the spectra of u and v, their coherency, and coherence.

In terms of Fourier estimates (omitting the start-time argument), $F(u, \omega, T)=\hat{L}_{X}(\omega) F(x, \omega, T)$ and $F(v, \omega, T)=\hat{L}_{Y}(\omega) F(y, \omega, T)$, so
$\left.\left.P_{U}(\omega)=\left.\lim _{T \rightarrow \infty} \frac{1}{T}\langle | F(u, \omega, T)\right|^{2}\right\rangle=\left.\lim _{T \rightarrow \infty} \frac{1}{T}\langle | \hat{L}_{X}(\omega) F(x, \omega, T)\right|^{2}\right\rangle=\left|\hat{L}_{X}(\omega)\right|^{2} P_{X}(\omega)$,
$\left.\left.P_{V}(\omega)=\left.\lim _{T \rightarrow \infty} \frac{1}{T}\langle | F(v, \omega, T)\right|^{2}\right\rangle=\left.\lim _{T \rightarrow \infty} \frac{1}{T}\langle | \hat{L}_{Y}(\omega) F(y, \omega, T)\right|^{2}\right\rangle=\left|\hat{L}_{Y}(\omega)\right|^{2} P_{Y}(\omega)$, and
$P_{U, V}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\langle F(u, \omega, T) \overline{F(v, \omega, T)}\rangle=$
$\lim _{T \rightarrow \infty} \frac{1}{T}\left\langle\hat{L}_{X}(\omega) F(x, \omega, T) \overline{\hat{L}_{Y}(\omega)} \overline{F(y, \omega, T)}\right\rangle=\hat{L}_{X}(\omega) \overline{\hat{L}_{Y}(\omega)} P_{X, Y}(\omega)$
For the coherency,
$C_{U, V}(\omega)=\frac{P_{U, V}(\omega)}{\sqrt{P_{U}(\omega) P_{V}(\omega)}}=\frac{\hat{L}_{X}(\omega) \overline{\hat{L}_{Y}(\omega)} P_{X, Y}(\omega)}{\left|\hat{L}_{X}(\omega)\right|\left|\hat{L}_{Y}(\omega)\right| \sqrt{P_{X}(\omega) P_{Y}(\omega)}}=\frac{\hat{L}_{X}(\omega) \overline{\hat{L}_{Y}(\omega)}}{\left|\hat{L}_{X}(\omega)\right|\left|\hat{L}_{Y}(\omega)\right|} C_{X, Y}(\omega)$.

Note that the multiplier $\frac{\hat{L}_{X}(\omega) \overline{\hat{L}_{Y}(\omega)}}{\left|\hat{L}_{X}(\omega)\right|\left|\hat{L}_{Y}(\omega)\right|}$ has magnitude 1, so $\left|C_{U, V}(\omega)\right|=\left|C_{X, Y}(\omega)\right|$-- i.e., the coherence is unchanged by the interposed filters L_{X} and L_{Y}. These filters only affect the phase of the coherency, and this effect is manifest in a product of two terms - one that adds the phase shift
due to L_{X}, and that subtracts the phase shift due to L_{Y}. In particular, if $L_{X}=L_{Y}$ (e.g., they are both due to the same measuring device), then these filters do not affect the coherency.

Q2. The cross-spectrum without explicit "common sources"

Given this setup, with A and B independent sources, find $P_{X}(\omega), P_{Y}(\omega)$, and $P_{X, Y}(\omega)$ in terms of the power spectra of A and B.

In terms of Fourier estimates (omitting the argument T_{0})

$$
F(x, \omega, T)=\hat{G}_{X}(\omega)\left(\hat{H}_{Y X}(\omega) F(y, \omega, T)+F(a, \omega, T)\right)
$$

and
$F(y, \omega, T)=\hat{G}_{Y}(\omega)\left(\hat{H}_{Y X}(\omega) F(x, \omega, T)+F(b, \omega, T)\right)$, so we can solve for $F(x, \omega, T)$:
$F(x, \omega, T)=\hat{G}_{X}(\omega)\left(\hat{H}_{Y X}(\omega) \hat{G}_{Y}(\omega)\left(\hat{H}_{Y X}(\omega) F(x, \omega, T)+F(b, \omega, T)\right)+F(a, \omega, T)\right)$.

Writing $\hat{Z}(\omega)=\hat{G}_{X}(\omega) \hat{G}_{Y}(\omega) \hat{H}_{X Y}(\omega) \hat{H}_{Y X}(\omega)$ (corresponding to one round trip through the network, from a through G_{X} through $H_{X Y}$ through G_{Y} through $H_{Y X}$),
$F(x, \omega, T)=\frac{\hat{G}_{X}(\omega)\left(\hat{H}_{Y X}(\omega) \hat{G}_{Y}(\omega) F(b, \omega, T)+F(a, \omega, T)\right)}{1-\hat{Z}(\omega)}$, and similarly for $F(y, \omega, T)$,
$F(y, \omega, T)=\frac{\hat{G}_{Y}(\omega)\left(\hat{H}_{X Y}(\omega) \hat{G}_{X}(\omega) F(a, \omega, T)+F(b, \omega, T)\right)}{1-\hat{Z}(\omega)}$.
Remembering that a and b are independent allows us to calculate the needed averages from

$$
\begin{aligned}
& \left.\left.P_{X}(\omega)=\left.\lim _{T \rightarrow \infty} \frac{1}{T}\langle | F(x, \omega, T)\right|^{2}\right\rangle, P_{Y}(\omega)=\left.\lim _{T \rightarrow \infty} \frac{1}{T}\langle | F(y, \omega, T)\right|^{2}\right\rangle, \text { and } \\
& P_{X, Y}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\langle F(x, \omega, T) \overline{F(y, \omega, T)}\rangle: \\
& P_{X}(\omega)=\frac{\left|\hat{G}_{X}(\omega)\right|^{2} P_{A}(\omega)+\left|\hat{G}_{X}(\omega) \hat{G}_{Y}(\omega) \hat{H}_{Y X}(\omega)\right|^{2} P_{B}(\omega)}{|1-\hat{Z}(\omega)|^{2}}
\end{aligned}
$$

$$
P_{Y}(\omega)=\frac{\left|\hat{G}_{Y}(\omega)\right|^{2} P_{B}(\omega)+\left|\hat{G}_{X}(\omega) \hat{G}_{Y}(\omega) \hat{H}_{X Y}(\omega)\right|^{2} P_{A}(\omega)}{|1-\hat{Z}(\omega)|^{2}},
$$

and

$$
P_{X, Y}(\omega)=\frac{\left|\hat{G}_{Y}(\omega)\right|^{2} \hat{G}_{X}(\omega) \hat{H}_{X X}(\omega) P_{B}(\omega)+\left|\hat{G}_{X}(\omega)\right|^{2} \overline{\hat{G}_{Y}(\omega) \hat{H}_{X Y}(\omega)} P_{A}(\omega)}{|1-\hat{Z}(\omega)|^{2}} .
$$

Note that the denominator becomes unity if either cross-connecting filter H is absent.

