Linear Systems, Black Boxes, and Beyond
Homework \#2 (2010-2011)
Here, rectangles with letters inside represent linear filters, and rectangles with a "+" inside represents summation.

Q1: The reason for the normalization in the definition of coherency:

Given x and y, signals whose spectra $P_{X}(\omega)$ and $P_{Y}(\omega)$, cross-spectrum $P_{X, Y}(\omega)$, and coherency $C_{X, Y}(\omega)$ are known, find the spectra of u and v, their coherency, and coherence.

Q2. The cross-spectrum without explicit "common sources"

Given this setup, with A and B independent sources, find $P_{X}(\omega), P_{Y}(\omega)$, and $P_{X, Y}(\omega)$ in terms of the power spectra of A and B.

