Linear Transformations and Group Representations

Homework \#1 (2010-2011), Answers
Q1: Eigenvectors of some linear operators in matrix form (also see Homework from "Algebraic Overview" (2008-2009))

In each case, find the eigenvalues, the eigenvectors, the dimensions of the eigenspaces, and whether a basis can be chosen from the eigenvectors.
A. $A=\left(\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right)$.

First, use the determinant to find the eigenvalues. $\operatorname{det}(z I-A)=\operatorname{det}\left(\begin{array}{cc}z-1 & -r \\ 0 & z-1\end{array}\right)=(z-1)^{2}$. $\operatorname{det}(z I-A)=0$ requires $z=1$, so the only eigenvalue of A is 1 .
Say V has basis elements e_{1} and e_{2}, expressed as columns $e_{1}=\binom{1}{0}$ and $e_{2}=\binom{0}{1}$. Then $A e_{1}=e_{1}$ and $A e_{2}=r e_{1}+e_{2}$. So e_{1} is an eigenvector of eigenvalue 1. To look for any others: Let $v=a e_{1}+b e_{2}$. Then $A v=A\left(a e_{1}+b e_{2}\right)=a e_{1}+b\left(r e_{1}+e_{2}\right)=(a+b r) e_{1}+b e_{2}$.
$A v=v$ implies $a e_{1}+b e_{2}=(a+b r) e_{1}+b e_{2}$. Since e_{1} and e_{2} are linearly independent (they form a basis), their coefficients must be equal. For e_{1}, this requires $a=a+b r$, i.e., $b=0$. For e_{2}, the coefficients are always equal. So the only eigenvalues have $b=0$, i.e., the only eigenvalues are e_{1} and its multiples.

So there is one eigenvalue, 1 , whose eigenspace has dimension 1 , spanned by the eigenvector $e_{1}=\binom{1}{0}$. Since A operates in a two-dimensional vector space, the eigenvectors cannot form a basis.
B. $B=\left(\begin{array}{ll}q & r \\ r & q\end{array}\right)$ (assume $q>r>0$).

Again, first use the determinant to find the eigenvalues.
$\operatorname{det}(z I-B)=\operatorname{det}\left(\begin{array}{cc}z-q & -r \\ -r & z-q\end{array}\right)=(z-q)^{2}-r^{2} . \operatorname{det}(z I-B)=0$ solves for $z=q \pm r$, so these are the eigenvalues of B. To find the eigenvectors: As in part A, say $e_{1}=\binom{1}{0}$ and $e_{2}=\binom{0}{1}$ and v is an eigenvector with $v=a e_{1}+b e_{2} . B e_{1}=q e_{1}+r e_{2} . B e_{2}=r e_{1}+q e_{2}$. So

$$
B v=a B e_{1}+b B e_{2}=a\left(q e_{1}+r e_{2}\right)+b\left(r e_{1}+q e_{2}\right)=(a q+b r) e_{1}+(a r+b q) e_{2} .
$$

Looking for the eigenvector of eigenvalue $q+r$:
$B v=(q+r) v$ implies $(a q+b r) e_{1}+(a r+b q) e_{2}=(q+r) a e_{1}+(q+r) b e_{2}$. Since e_{1} and e_{2} are linearly independent, equality can only hold if coefficients of e_{1} match, and coefficients of e_{2} match.
For $e_{1}: a q+b r=a q+a r$; For $e_{2}: a r+b q=b q+b r$. Both solve for $a=b$. So the eigenvectors corresponding to the eigenvalue $q+r$ are multiples of $e_{1}+e_{2}$, i.e., of $\binom{1}{1}$.

For the eigenvectors of eigenvalue $q-r$:
$B v=(q-r) v$ implies $(a q+b r) e_{1}+(a r+b q) e_{2}=(q-r) a e_{1}+(q-r) b e_{2}$. Since e_{1} and e_{2} are linearly independent, equality can only hold if coefficients of e_{1} match, and coefficients of e_{2} match.
For $e_{1}: a q+b r=a q-a r$; For $e_{2}: a r+b q=b q-b r$. Both solve for $a=-b$. So the eigenvectors corresponding to the eigenvalue $q-r$ are multiples of $e_{1}-e_{2}$, i.e., of $\binom{1}{-1}$.
So there are two eigenvalues, $q+r$ and $q-r$, each with eigenspace of dimension 1 , spanned by $e_{1}+e_{2}=\binom{1}{1}$, and $e_{1}-e_{2}=\binom{1}{-1}$. They form a basis.

Q2: Eigenvectors of some linear operators in a continuous space
V is a vector space of functions of time. In each case, find the eigenvalues and eigenvectors of the indicated operator, and determine whether the operator is time-translation invariant
A. $L v(t)=t v(t)$.

If $v(t)$ has eigenvalue λ, then $L v(t)=\lambda v(t)$ means $\lambda v(t)=t v(t)$, which means that either $t=\lambda$ or $v(t)=0$. This is satisfied by $v(t)=\left\{\begin{array}{l}a, t=\lambda \\ 0, t \neq \lambda\end{array}\right.$.
L is not time-translation invariant: $\left.\left(D_{T} L v\right)(t)=\left(D_{T}(v v)\right)(t)\right]=(t+T) v(t+T)$ but $\left(L D_{T}\right)(t)=L\left(D_{T}(v)\right)(t)=t v(t+T)$.
B. $R v(t)=v(-t)$.

If $v(t)$ has eigenvalue λ, then $R v(t)=\lambda v(t)$ means $\lambda v(t)=v(-t)$, and, that $\lambda^{2} v(t)=\lambda v(-t)=v(t)$ which means that $\lambda=1$ or $\lambda=-1$.

If $\lambda=1$: Any even-symmetric function (satisfying $v(t)=v(-t)$) is an eigenvector. If $\lambda=-1$: Any odd-symmetric function (satisfying $v(t)=-v(-t)$) is an eigenvector.

Starting with an arbitrary f, $(I+R) f=f+R f$ is always an even-symmetric function, since $R(I+R) f=\left(R+R^{2}\right) f=(R+I) f$.

Similarly, $(I-R) f=f-R f$ is always an odd-symmetric function, since $R(I-R) f=\left(R-R^{2}\right) f=(R-I) f=-(I-R) f$.
R is not time-translation invariant: $\left.\left(D_{T} R v\right)(t)=\left(D_{T}(R v)\right)(t)\right]=v(-(t+T))=v(-t-T)$ but $\left(R D_{T}\right)(t)=R\left(D_{T}(v)\right)(t)=v(-t+T)$.

Note that R and all the D_{T} 's form a group, since $R^{2}=I$ and $D_{T} R=R D_{-T}$, vaguely like the dihedral group - but here, continuous and open-ended.
C. $M v(t)=\frac{d}{d t} v(t)$.

If $v(t)$ has eigenvalue λ, then $M v(t)=\lambda v(t)$ means $\lambda v(t)=\frac{d v}{d t}(t)$, i.e., that v satisfies the differential equation $\frac{d v}{d t}=\lambda v$. Solve by separation of variables
$\frac{d v}{v}=\lambda d t$, which implies $d(\log v)=\lambda d t$, which implies $v(t)=a \exp (\lambda t)$ (or by inspection). Eigenvectors are thus $v(t)=a \exp (\lambda t)$.
M is time-translation invariant: $\left(D_{T} M v\right)(t)=\frac{d}{d t} v(t+T)=\left(M D_{T} v\right)(t)$.
D. $N v(t)=t \frac{d}{d t} v(t)$.

If $v(t)$ has eigenvalue λ, then $N v(t)=\lambda v(t)$ means $\lambda v(t)=t \frac{d v}{d t}(t)$, i.e., that v satisfies the differential equation $t \frac{d v}{d t}=\lambda v$.
Solve by separation of variables:
$\frac{d v}{v}=\lambda \frac{d t}{t}$, which implies $d(\log v)=\lambda d(\log t)$, which implies $v(t)=a t^{\lambda}$ (or by inspection).
Eigenvectors are thus $v(t)=a t^{\lambda}$.
N is not time-translation invariant: $\left(D_{T} N v\right)(t)=(t+T) \frac{d}{d t} v(t+T)$, but $\left(N D_{T} v\right)(t)=t \frac{d}{d t} v(t+T)$.

