Linear Transformations and Group Representations

Homework #1 (2010-2011), Answers

Q1: Eigenvectors of some linear operators in matrix form (also see Homework from "Algebraic Overview" (2008-2009))

In each case, find the eigenvalues, the eigenvectors, the dimensions of the eigenspaces, and whether a basis can be chosen from the eigenvectors.

$$A. \ A = \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix}.$$

First, use the determinant to find the eigenvalues. $det(zI - A) = det \begin{pmatrix} z - 1 & -r \\ 0 & z - 1 \end{pmatrix} = (z - 1)^2$.

det(zI - A) = 0 requires z = 1, so the only eigenvalue of A is 1.

Say V has basis elements e_1 and e_2 , expressed as columns $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Then $Ae_1 = e_1$

and $Ae_2 = re_1 + e_2$. So e_1 is an eigenvector of eigenvalue 1. To look for any others: Let $w = ae_1 + be_2$. Then $Aw = A(ae_1 + be_2) = ae_1 + b(re_1 + e_2) = (a + br)e_1 + be_2$.

$$v = ae_1 + be_2$$
. Then $Av = A(ae_1 + be_2) = ae_1 + b(re_1 + e_2) = (a + br)e_1 + be_2$.

Av = v implies $ae_1 + be_2 = (a + br)e_1 + be_2$. Since e_1 and e_2 are linearly independent (they form a basis), their coefficients must be equal. For e_1 , this requires a = a + br, i.e., b = 0. For e_2 , the coefficients are always equal. So the only eigenvalues have b = 0, i.e., the only eigenvalues are e_1 and its multiples.

So there is one eigenvalue, 1, whose eigenspace has dimension 1, spanned by the eigenvector $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Since *A* operates in a two-dimensional vector space, the eigenvectors cannot form a basis

basis.

B.
$$B = \begin{pmatrix} q & r \\ r & q \end{pmatrix}$$
 (assume $q > r > 0$).

Again, first use the determinant to find the eigenvalues.

 $\det(zI - B) = \det\begin{pmatrix} z - q & -r \\ -r & z - q \end{pmatrix} = (z - q)^2 - r^2 \cdot \det(zI - B) = 0 \text{ solves for } z = q \pm r \text{, so these are}$

the eigenvalues of *B*. To find the eigenvectors: As in part *A*, say $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and *v* is an eigenvector with $v = ae_1 + be_2$. $Be_1 = qe_1 + re_2$. $Be_2 = re_1 + qe_2$. So $Bv = aBe_1 + bBe_2 = a(qe_1 + re_2) + b(re_1 + qe_2) = (aq + br)e_1 + (ar + bq)e_2$.

Looking for the eigenvector of eigenvalue q + r:

Bv = (q + r)v implies $(aq + br)e_1 + (ar + bq)e_2 = (q + r)ae_1 + (q + r)be_2$. Since e_1 and e_2 are linearly independent, equality can only hold if coefficients of e_1 match, and coefficients of e_2 match.

For e_1 : aq + br = aq + ar; For e_2 : ar + bq = bq + br. Both solve for a = b. So the eigenvectors corresponding to the eigenvalue q + r are multiples of $e_1 + e_2$, i.e., of $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

For the eigenvectors of eigenvalue q-r:

Bv = (q-r)v implies $(aq+br)e_1 + (ar+bq)e_2 = (q-r)ae_1 + (q-r)be_2$. Since e_1 and e_2 are linearly independent, equality can only hold if coefficients of e_1 match, and coefficients of e_2 match.

For e_1 : aq + br = aq - ar; For e_2 : ar + bq = bq - br. Both solve for a = -b. So the eigenvectors corresponding to the eigenvalue q - r are multiples of $e_1 - e_2$, i.e., of $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

So there are two eigenvalues, q + r and q - r, each with eigenspace of dimension 1, spanned by

$$e_1 + e_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, and $e_1 - e_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. They form a basis.

Q2: Eigenvectors of some linear operators in a continuous space

V is a vector space of functions of time. In each case, find the eigenvalues and eigenvectors of the indicated operator, and determine whether the operator is time-translation invariant

A.
$$Lv(t) = tv(t)$$
.

If v(t) has eigenvalue λ , then $Lv(t) = \lambda v(t)$ means $\lambda v(t) = tv(t)$, which means that either $t = \lambda$ or v(t) = 0. This is satisfied by $v(t) = \begin{cases} a, t = \lambda \\ 0, t \neq \lambda \end{cases}$.

L is not time-translation invariant: $(D_T L v)(t) = (D_T (tv))(t)] = (t+T)v(t+T)$ but $(LD_T)(t) = L(D_T (v))(t) = tv(t+T)$.

B. Rv(t) = v(-t).

If v(t) has eigenvalue λ , then $Rv(t) = \lambda v(t)$ means $\lambda v(t) = v(-t)$, and, that $\lambda^2 v(t) = \lambda v(-t) = v(t)$ which means that $\lambda = 1$ or $\lambda = -1$.

If $\lambda = 1$: Any even-symmetric function (satisfying v(t) = v(-t)) is an eigenvector. If $\lambda = -1$: Any odd-symmetric function (satisfying v(t) = -v(-t)) is an eigenvector. Starting with an arbitrary f, (I + R)f = f + Rf is always an even-symmetric function, since $R(I+R)f = (R+R^2)f = (R+I)f$.

Similarly, (I - R)f = f - Rf is always an odd-symmetric function, since $R(I - R)f = (R - R^2)f = (R - I)f = -(I - R)f$.

R is not time-translation invariant: $(D_T R v)(t) = (D_T (R v))(t)] = v(-(t+T)) = v(-t-T)$ but $(RD_T)(t) = R(D_T(v))(t) = v(-t+T)$.

Note that *R* and all the D_T 's form a group, since $R^2 = I$ and $D_T R = RD_{-T}$, vaguely like the dihedral group – but here, continuous and open-ended.

$$C. \ Mv(t) = \frac{d}{dt}v(t)$$

If v(t) has eigenvalue λ , then $Mv(t) = \lambda v(t)$ means $\lambda v(t) = \frac{dv}{dt}(t)$, i.e., that v satisfies the differential equation $\frac{dv}{dt} = \lambda v$. Solve by separation of variables

 $\frac{dv}{v} = \lambda dt$, which implies $d(\log v) = \lambda dt$, which implies $v(t) = a \exp(\lambda t)$ (or by inspection). Eigenvectors are thus $v(t) = a \exp(\lambda t)$.

M is time-translation invariant: $(D_T M v)(t) = \frac{d}{dt} v(t+T) = (M D_T v)(t)$.

$$D. Nv(t) = t \frac{d}{dt} v(t).$$

If v(t) has eigenvalue λ , then $Nv(t) = \lambda v(t)$ means $\lambda v(t) = t \frac{dv}{dt}(t)$, i.e., that v satisfies the differential equation $t \frac{dv}{dt} = \lambda v$. Solve by separation of variables:

 $\frac{dv}{v} = \lambda \frac{dt}{t}$, which implies $d(\log v) = \lambda d(\log t)$, which implies $v(t) = at^{\lambda}$ (or by inspection). Eigenvectors are thus $v(t) = at^{\lambda}$.

N is not time-translation invariant: $(D_T N v)(t) = (t+T) \frac{d}{dt} v(t+T)$, but $(ND_T v)(t) = t \frac{d}{dt} v(t+T)$.