Linear Transformations and Group Representations

Homework \#2 (2010-2011), Answers

Q1: Classifying some operators

In each case, determine whether the operators are normal, self-adjoint, unitary, or projections, using the standard inner product for a finite-dimensional space (A, B, C, D), or for complexvalued functions on the line (E, F, G, H). Note: G and H are a bit harder.
A. $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
$A^{*}=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right) . A A^{*}=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ but $A^{*} A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$. So A is not normal (or self-adjoint, or unitary, or a projection). But $A^{2}=A$, so A is idempotent.
B. $B=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \phi & \sin \varphi \\ 0 & -\sin \varphi & \cos \varphi\end{array}\right)$.

This is a rotation by angle φ in the $e_{2}-e_{3}$-plane. $B^{*}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \phi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi\end{array}\right) . B B^{*}=B^{*} B=I$, so B is normal and unitary (but not self-adjoint or a projection).
C. $C=\left(\begin{array}{cccc}\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2}\end{array}\right)$.

This is like image projection: the first two coordinates are averaged, and the last two coordinates are averaged. $C^{*}=C$. So C is normal and self-adjoint. $C^{2}=C$, so C is a projection. $C C^{*}=C^{2}=C \neq I$, so C is not unitary.
D. $D=\left(\begin{array}{cc}0 & q i \\ -q i & 0\end{array}\right)$, q real.
$D^{*}=D$, so D is normal and self-adjoint. $D D^{*}=D^{2}=\left(\begin{array}{cc}q^{2} & 0 \\ 0 & q^{2}\end{array}\right)$, so if $q= \pm 1, D$ is unitary (but otherwise, it is not). D is not a projection, since $D^{2} \neq D$.
E. $T f(x)=\frac{1}{2}(f(x)+f(-x))$.
T is self-adjoint (and therefore normal), since
$\langle T f, g\rangle=\frac{1}{2} \int_{-\infty}^{\infty}(f(x)+f(-x)) \overline{g(x)} d x=\frac{1}{2}\left(\int_{-\infty}^{\infty} f(x) \overline{g(x)} d x+\int_{-\infty}^{\infty} f(-x) \overline{g(x)} d x\right)$
$=\frac{1}{2}\left(\int_{-\infty}^{\infty} f(x) \overline{g(x)} d x+\int_{-\infty}^{\infty} f(y) \overline{g(-y)} d y\right)=\langle f, T g\rangle$
with the equality between lines justified by a change of variables $y=-x$ in the second integral
T replaces f by the even-symmetric component of f, so we expect that $T^{2}=T$ (and it is):
$T^{2} f(x)=\frac{1}{2}(T f(x)+T f(-x))=\frac{1}{2}\left(\frac{f(x)+f(-x)}{2}+\frac{f(-x)+f(x)}{2}\right)=\frac{f(x)+f(-x)}{2}=T f(x)$.
So T is a projection (but not unitary).
F. $W f(x)=x f(x)$.
W is self-adjoint (and therefore normal), since
$\langle W f, g\rangle=\int_{-\infty}^{\infty} x f(x) \overline{g(x)} d x=\int_{-\infty}^{\infty} f(x) \overline{x g(x)} d x=\langle f, W g\rangle$.
(x is real, so $\bar{x}=x$).
$W^{2} f(x)=W(x f)(x)=x^{2} f(x)$, so W is not unitary or a projection.
G. $Y f(x)=f^{\prime}(x)\left(f^{\prime}(x)=\frac{d f}{d x}\right)$.
Y is not self-adjoint, since
$\langle Y f, g\rangle=\int_{-\infty}^{\infty} f^{\prime}(x) \overline{g(x)} d x=\left.f(x) \overline{g(x)}\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} f(x) \overline{g^{\prime}(x)} d x=-\int_{-\infty}^{\infty} f(x) \overline{g^{\prime}(x)} d x=-\langle f, Y g\rangle$, and therefore, not unitary nor a projection. Here, we use integration by parts at the second step, and note that if f and g are square-integrable, then they must vanish at $\pm \infty$.
However, this does show that since $Y^{*}=-Y$, so $Y Y^{*}=Y^{*} Y=-Y^{2}$, and therefore Y is normal.
H. $Z f(x)=i f^{\prime}(x)\left(f^{\prime}(x)=\frac{d f}{d x}\right)$.
Z is self-adjoint, and therefore normal, since (as in G)
$\langle Z f, g\rangle=\int_{-\infty}^{\infty} i f^{\prime}(x) \overline{g(x)} d x=-\int_{-\infty}^{\infty} i f(x) \overline{g^{\prime}(x)} d x=\int_{-\infty}^{\infty} f(x) \overline{i g^{\prime}(x)} d x=\langle f, Z g\rangle$.
($\bar{i}=-i$, absorbing the minus sign.)
$Z^{2} f(x)=Z\left(i f^{\prime}\right)(x)=i^{2} f^{\prime \prime}(x)=-f^{\prime \prime}(x)$, so Z is not unitary or a projection.

Q2. Making self-adjoint operators and projections
Part A. For any operator A, show $A^{*} A$ is self-adjoint.
Recall that the adjoint of a product is the product of the adjoints, in reverse order. Therefore, $\left(A^{*} A\right)^{*}=A^{*}\left(A^{*}\right)^{*}$.
Recall that the adjoint of the adjoint is the original transformation. So $\left(A^{*}\right)^{*}=A$, and, $\left(A^{*} A\right)^{*}=A^{*}\left(A^{*}\right)^{*}=A^{*} A$.

Part B. Assuming that $B^{*} B$ has an inverse, show $P_{B}=B\left(B^{*} B\right)^{-1} B^{*}$ is a projection, by showing that it is idempotent and self-adjoint.

Idempotent:
$\left(P_{B}\right)^{2}=\left(B\left(B^{*} B\right)^{-1} B^{*}\right)\left(B\left(B^{*} B\right)^{-1} B^{*}\right)=B\left(B^{*} B\right)^{-1}\left(B^{*} B\right)\left(B^{*} B\right)^{-1} B^{*}=B\left(B^{*} B\right)^{-1} B^{*}=P_{B}$.
Self-adjoint:
$\left(P_{B}\right)^{*}=\left(B\left(B^{*} B\right)^{-1} B^{*}\right)^{*}=B^{* *}\left(\left(B^{*} B\right)^{-1}\right)^{*} B^{*}=B\left(\left(B^{*} B\right)^{-1}\right)^{*} B^{*}$ (second equality: adjoint of a product is the product of the adjoints in reverse order; third equality: $\left(B^{*}\right)^{*}=B$.)
Working on $\left(\left(B^{*} B\right)^{-1}\right)^{*}:\left(\left(B^{*} B\right)^{-1}\right)^{*}=\left(\left(B^{*} B\right)^{*}\right)^{-1}=\left(B^{*} B\right)^{-1}$
(first equality: adjoint of an inverse is the inverse of the adjoint, second equality: part A.)

