
Linear Transformations and Group Representations 
 
Homework #2 (2010-2011), Answers 
 
Q1: Classifying some operators 
 
In each case, determine whether the operators are normal, self-adjoint, unitary, or projections, 
using the standard inner product for a finite-dimensional space (A, B, C, D), or for complex-
valued functions on the line (E, F, G, H). Note: G and H are a bit harder. 
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unitary, or a projection).  But 2A A= , so A is idempotent. 
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This is a rotation by angle ϕ  in the e2-e3-plane. 
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is normal and unitary (but not self-adjoint or a projection). 
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This is like image projection:  the first two coordinates are averaged, and the last two coordinates 
are averaged. C C∗ = .  So C is normal and self-adjoint.  2C C= , so C is a projection.  

2CC C C I∗ = = ≠ , so C is not unitary. 
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D D∗ = , so D is normal and self-adjoint.  
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, so if  1q =± , D is unitary 

(but otherwise, it is not).  D is not a projection, since 2D D≠ . 
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with the equality between lines justified by a change of variables y x=− in the second integral 
 
T replaces f by the even-symmetric component of f, so we expect that 2T T=  (and it is): 
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So T is a projection (but not unitary). 
 
F. ( ) ( )Wf x xf x= . 
W is self-adjoint (and therefore normal), since 
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(x is real, so x x= ). 
 

2 2( ) ( )( ) ( )W f x W xf x x f x= = , so W is not unitary or a projection. 
 
 

G. ( ) ( )Yf x f x′=  ( ( ) dff x
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therefore, not unitary nor a projection.  Here, we use integration by parts at the second step, and 
note that if f and g are square-integrable, then they must vanish at ±∞ .   
However, this does show that since Y Y∗ =− , so 2YY Y Y Y∗ ∗= =− , and therefore Y is normal.  
 

H. ( ) ( )Zf x if x′=  ( ( ) dff x
dx

′ = ). 

Z is self-adjoint, and therefore normal, since (as in G) 
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( i i=− , absorbing the minus sign.) 
 

2 2( ) ( )( ) ( ) ( )Z f x Z if x i f x f x′ ′′ ′′= = =− , so Z is not unitary or a projection. 
 
 
Q2. Making self-adjoint operators and projections 
 
Part A.  For any operator A, show A A∗  is self-adjoint. 
 
Recall that the adjoint of a product is the product of the adjoints, in reverse order.  Therefore,  

( ) ( )A A A A
∗ ∗∗ ∗ ∗= .   

Recall that the adjoint of the adjoint is the original transformation.  So ( )A A
∗∗ = , and, 

( ) ( )A A A A A A
∗ ∗∗ ∗ ∗ ∗= = .   

 
 
Part B. Assuming that B B∗  has an inverse, show  

1( )BP B B B B∗ − ∗=  is a projection, by showing that it is idempotent and self-adjoint.   
 
Idempotent: 
( ) ( )( )2 1 1 1 1 1( ) ( ) ( ) ( )( ) ( )B BP B B B B B B B B B B B B B B B B B B B B P∗ − ∗ ∗ − ∗ ∗ − ∗ ∗ − ∗ ∗ − ∗= = = = . 
 
Self-adjoint: 

( ) ( ) ( ) ( )1 1 1( ) ( ) ( )BP B B B B B B B B B B B B
∗ ∗ ∗∗ ∗ − ∗ ∗∗ ∗ − ∗ ∗ − ∗= = =  (second equality: adjoint of a 

product is the product of the adjoints in reverse order; third equality:  ( )B B
∗∗ = .) 

Working on ( )1( )B B
∗∗ − : ( ) ( ) ( )1 11( ) ( )B B B B B B

∗ − −∗ − ∗ ∗ ∗= =  
(first equality: adjoint of an inverse is the inverse of the adjoint, second equality: part A.) 
 
 


