Linear Transformations and Group Representations

Homework #2 (2010-2011)

Q1: Classifying some operators

In each case, determine whether the operators are normal, self-adjoint, unitary, or projections,

using the standard inner product for a finite-dimensional space (A, B, C, D), or for complex-
valued functions on the line (E, F, G, H). Note: G and H are a bit harder.
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Q2. Making self-adjoint operators and projections

Part A. For any operator A, show A"A is self-adjoint.
Part B. Assuming that BB has an inverse, show
P, = B(B*B) 'B" is a projection, by showing that it is idempotent and self-adjoint.



