Linear Transformations and Group Representations

Homework \#3 (2010-2011)
Q1: Representations of direct products of a group (or, two-dimensional Fourier transforms)
Setup: Given two groups, G_{1} and G_{2}, we can define a group which is their "direct product" $G_{1} \times G_{2}$, with elements $\left(g_{1}, g_{2}\right)$ via the operation $\left(g_{1}, g_{2}\right) \circ\left(h_{1}, h_{2}\right)=\left(g_{1} h_{1}, g_{2} h_{2}\right)$. Moreover, given a representation L_{1} of G_{1} in vector space V_{1} and a representation L_{2} of G_{2} in V_{2}, we can form a representation $L_{1} \times L_{2}$ of $G_{1} \times G_{2}$ in $V_{1} \otimes V_{2}$, defined by $\left(L_{1} \times L_{2}\right)_{\left(g_{1}, g_{2}\right)}=\left(L_{1}\right)_{g_{1}} \otimes\left(L_{2}\right)_{g_{2}}$. Given the above setup:
A. Find the character $\chi_{L_{1} \times L_{2}}\left(g_{1}, g_{2}\right)$.
B. If G_{1} and G_{2} are finite, show that if L_{1} is an irreducible representation of G_{1} and L_{2} is an irreducible representation of G_{2}, then $L_{1} \times L_{2}$ is an irreducible representation of $G_{1} \times G_{2}$.

Q2: Representations of the quaternion group
The "quaternion group" Q is defined as follows: It has 8 elements, $\pm 1, \pm i, \pm j$, and $\pm k$. Group operations involving ± 1 are ordinary multiplication, for example, $(-1) j=-j$ and $(-1)(-k)=k$. Group operations not involving ± 1 are defined as follows: $i^{2}=j^{2}=k^{2}=-1$, $i j=-j i=k, j k=-k j=i$, and $k i=-i k=j$, with other products determined by the associative law, e.g., $(-i) j=-(i j)=-k$. Note that $x= \pm i, j$, or $k, x^{4}=1$ and $x^{-1}=x^{3}=x\left(x^{2}\right)=-x$, so, for example, $i j i^{-1}=-i j i=-k i=-j$. If both x and $y= \pm i, j$, or k but $x \neq \pm y$, then x and y do not commute; in fact, $x y=-y x$.
A. Find the conjugate classes of Q. (The conjugate class of an element g is the set of elements that are equivalent to g under inner automorphism, namely, the set of all elements $h^{-1} g h$).
B. Find the complete character table of Q.

Hint 1. We can construct a one-dimensional representation of Q as follows. Let $x= \pm i, j$, or k. For every element y of $Q, x^{-1} y x$ is either y or $-y$. So write $s_{x}(y)=x^{-1} y x y^{-1}$, where $s_{x}(y)$ is always ± 1, and hence commutes with everything. Show that $s_{x}(y z)=s_{x}(y) s_{x}(z)$. This means that for each $x= \pm i, j$, or k, the map from y to $s_{x}(y)$ is a one-dimensional representation.

Hint 2. After constructing the above representations, determine which ones are different, and, by using the group representation theorem, determine that there is only one representation not yet accounted for - and find its character using the fact that the characters must be orthogonal.

