
Exam, 2010-2011 Solutions 
 

Q1. Constructing a balanced sequence containing three kinds of stimuli 
Here we design a balanced cyclic sequence for three kinds of stimuli (labeled {0,1,2} ), in which every 
three-element sequence (except for the sequence {0,0,0})occurs exactly once.  We do this by extending 
the finite field 3  to make a field of size 27, (3,3)GF . 
 
Analogous to 2 , 3  is the field containing {0,1,2} , with addition and multiplication defined (mod 3).  
The polynomial 3 2 1 0x x+ + =  has no solutions in 3 , so we add a formal quantity ξ  to 3 , and 
assert that 3 2 1 0ξ ξ+ + = , and that ξ  satisfies the associative, commutative, and distributive laws for 
addition and multiplication with itself and with the elements of 3 . 
 
A.  Using 3 2 1 0ξ ξ+ + = ,  express rξ  in terms of 0ξ , 1ξ ,and  2ξ , for 1,..., 26r = .  Note that the 
sequence of coefficients of 0ξ , considered cyclically, has the property that ever sequence of three 
labels (except for the sequence {0,0,0})occurs exactly once.   
 
Field operations are “mod 3”, i.e,. we can replace 1−  by +1, and 3 by 0, 4 by 1, etc..  So, for example, 

3 2 1 0ξ ξ+ + =  implies 3 2 1 2ξ ξ ξ=− − = + , and 32 2 4 2 1ξ ξ ξ= + = + .   
So, using the field properties and the equation satisfied by ξ , we find for example that 

4 3 2( 2) 2ξ ξ ξ ξ ξ ξ ξ= ⋅ = + = + ; 5 4 2 3 2 2( 2 ) 2 2 2ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ= ⋅ = + = + = + + . 
 
Working similarly, the table of coefficients is: 
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B. Consider the sequence of the coefficients of 0ξ  that occur in the expansion of ξ k , for 0,..., 25k = . 
Note that the second half of the sequence can be obtained from the first half of the sequence by 
exchanging 1 and 2.  Why must this be true? 
 
As the above table shows, 13 2ξ = .  So 13 2k k+ =ξ ξ , so the coefficient of 0ξ  in 13ξ +k  is twice the 
coefficient of 0ξ  in ξ k , which means that 1 is replaced by 2 1 2⋅ = , and 2 is replaced by 2 2 1⋅ = . 
 
C. What is the size of the multiplicative group generated by ξ ? Show that for all elements g in this 
group, 26 1=g . 
 
The group has 26 elements,  0 2 251, , ,...,ξ ξ ξ ξ= , since the first time that the identity recurs in the above 
table is 26 1ξ = . (This in turn means that the above table contains all the nonzero elements of the field 

(3,3)GF , since this field has 33 27=  elements.  
 
Since the order of every element of a finite group must divide the size of the group, the only possible 
orders are the factors of 26, namely, 1, 2, 13, and 26.  To see that this implies that 26 1=g  for all group 

elements g, note that 2 1=g , then ( )1326 2 1= =g g , and if 13 1=g , then ( )226 13 1= =g g   So in all cases, 
26 1=g . 

 
D. Which of the following maps are automorphisms of the multiplicative group (i.e., are 1-1 maps that 
preserve multiplication)?  2( ) =U g g , 3( ) =X g g , 5( ) =Y g g  
 

2( ) =U g g  cannot be an automorphism, since 13 2ξ =  but 13 26( ) 1ξ ξ= =U ,so U  maps two different 
elements onto 1. 
 

3( ) =X g g  is an automorphism; its inverse is X X , since ( )( )( ) ( )( )333 27 26 1+= = = =X X X g g g g g  

 
5( ) =Y g g  is an automorphism; its inverse is Y Y Y , since 

( )( )( )( ) ( )( ) ( )4
555 55 625 26 24 1Y Y Y Y g g g g g g⋅ +⎛ ⎞= = = = =⎜ ⎟

⎝ ⎠
. 

 
E.  Which of the above maps are automorphisms of the field (3,3)GF  (i.e., are 1-1 maps that preserve 
multiplication and addition)? 
 

2( ) =U g g  cannot be a field automorphism, since (as in D) it is not even an automorphism of the 
multiplicative group. 
 

3( ) =X g g  is a field automorphism, since 
3 3 2 2 3 3 3( ) ( ) 3 3 ( ) ( )X g h g h g g h gh h g h X g X h+ = + = + + + = + = + . 

 



5( ) =Y g g  is not a field automorphism.  One way to see this is to try some random choices to see if 
( ) ( ) ( )Y g h Y g Y h+ = + .  A convenient way to do this is 1g = , h ξ= .  From the above table, 

91 ξ ξ+ = , so 9 9 5 45 26 19 19 2(1 ) ( ) 2 2 2Y Yξ ξ ξ ξ ξ ξ ξ ξ⋅ ++ = = = = = = + + . 
On the other hand, 5 2 2(1) ( ) 1 1 (2 2) 2Y Y ξ ξ ξ ξ ξ ξ+ = + = + + + = + .  So Y does not preserve addition. 

Q2. Decomposing group representations 
Recall that if we have a group G with a representation U1 in V1 and another representation U2 in V2, 
we can define a group representation 1 2U U⊗  on 1 2V V⊗  by 

( )1, 2, 1 2 1, 1 2, 2( ) ( ) ( )g g g gU U v v U v U v⊗ ⊗ = ⊗ .  Here we will show that if V1 and V2 are the same (i.e., if 

1 2V V V= = ) and U1 and U2 are the same ( 1 2U U U= = ),we can decompose U U⊗  into a symmetric 
and an antisymmetric component, and determine their characters.  We will do this by decomposing 
V V⊗  into ( )sym V V⊗  and  ( )anti V V⊗ , and seeing how each transformation in U U⊗  acts in 
these components.  
 

A. Recall that a linear transformation A on V acts on a typical element ( )1( )
2

sym x y x y y x⊗ = ⊗ + ⊗  

of ( )sym V V⊗  by ( ) ( )1( ) ( ) ( ) ( ) ( ) ( )
2

A sym x y A x A y A y A x sym Ax Ay⊗ = ⊗ + ⊗ = ⊗ , and similarly for 

the action of A in ( )anti V V⊗ .  Given that A on V has distinct eigenvalues 1, , mλ λ…  and eigenvectors 

1, , mv v…  (and that V has dimension m), find the eigenvalues and eigenvectors for the action of A in 
( )sym V V⊗  and  ( )anti V V⊗  and their traces, denoted tr( ( ))sym A A⊗  and tr( ( ))anti A A⊗ .  

 
A convenient basis for ( )sym V V⊗  is ( )j ksym v v⊗ , for any pair j, k in { }1,..., m  with j k≤ .  These 
are eigenvectors of A, since 

( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( )

2 2
j k j k k j k jj j k j

j k j k j k

v v v vA v A v A v A v
A sym v v sym v v

λ λ λ λ
λ λ

⊗ + ⊗⊗ + ⊗
⊗ = = = ⊗ . 

This calculation also shows that the eigenvalues are the products j kλ λ .  We don’t consider pairs j, k  
for which k j> , since these have already been counted: ( ) ( )k j j ksym v v sym v v⊗ = ⊗ . 
 
A similar calculation holds for the action of A in ( )anti V V⊗ , except that ( )j kanti v v⊗  is only a basis 

element (and an eigenvector) if j k≠ , since ( )1( ) 0
2j j j j j janti v v v v v v⊗ = ⊗ − ⊗ = .  We also don’t 

consider pairs j, k  for which k j> , since these have already been counted: 
( ) ( )k j j kanti v v anti v v⊗ =− ⊗ . 

 
Thus, the eigenvalues for the action of A in  ( )sym V V⊗  are all pairwise products j kλ λ  with j k≤  

(including 2
jλ )– a total of ( 1) ( 1)

2 2
m m m mm− +

+ = , corresponding to the dimension of ( )sym V V⊗ . 

So 
1

tr( ( ))
m

j k
j k

sym A A λ λ
≤ ≤

⊗ = ∑ . 

 



 The eigenvalues for the action of A in  ( )anti V V⊗  are all pairwise products j kλ λ  with j k<  

(excluding 2
jλ ) – a total of ( 1)

2
m m−  quantities, corresponding to the dimension of ( )anti V V⊗ . 

So 
1

tr( ( ))
m

j k
j k

anti A A λ λ
≤ <

⊗ = ∑ . 

B.  Our next step is to express tr( ( ))sym A A⊗  (i.e., the trace of A acting in ( )sym V V⊗ ), and 
tr( ( ))anti A A⊗   (i.e., the trace of A acting in ( )anti V V⊗ ), in terms of easier quantities. Given the 
same setup as above, find the trace of A A⊗  (acting inV V⊗ ) and the trace of 2A  (acting in V), and 
relate this to tr( ( ))sym A A⊗  and tr( ( ))anti A A⊗ . 
 
To calculate ( )tr A A⊗  (the sum of its eigenvalues), we use the basis j kv v⊗   (all j and k from 1 to m) 
for V V⊗ .  The eigenvalue corresponding to j kv v⊗  is j kλ λ , as 

( )( ) ( ) ( ) ( )j k j k j j k k j k j kA A v v Av Av v v v vλ λ λ λ⊗ ⊗ = ⊗ = ⊗ = ⊗ .  So 

( ) ( )( )
2

2

, 1 1

tr tr
m m

j k j
j k j

A A Aλ λ λ
= =

⎛ ⎞⎟⎜ ⎟⊗ = = =⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑ ∑ . This can be rephrased as 

( )( )
2

2

, 1 1 1

tr 2
m m m

j k j k j
j k j k j

A λ λ λ λ λ
= ≤ < =

⎛ ⎞⎟⎜ ⎟= = +⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑ ∑ ∑ . 

 
To calculate ( )2tr A , we use the basis jv   for V. The eigenvalue corresponding to jv  is 2

jλ , as 

( ) ( )2 2
j j j j j j j jA v A Av A v Av vλ λ λ= = = = .   

 
To express tr( ( ))sym A A⊗  in terms of ( ) ( )2tr tr( )A A A⊗ =  and 2tr( )A : 

2

1 1 1

tr( ( ))
m m m

j k j k j
j k j k j

sym A A λ λ λ λ λ
≤ ≤ ≤ < =

⊗ = = +∑ ∑ ∑ . 

From ( )( )
2

2

, 1 1 1

tr 2
m m m

j k j k j
j k j k j

A λ λ λ λ λ
= ≤ < =

⎛ ⎞⎟⎜ ⎟= = +⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑ ∑ ∑ , we have ( )( )

2
2

1 1

1 tr
2

m m

j k j
j k j

Aλ λ λ
≤ < =

⎛ ⎞⎛ ⎞ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎟= −⎜⎜ ⎟ ⎟⎜⎜ ⎟⎜ ⎟⎝ ⎠ ⎟⎜⎝ ⎠
∑ ∑ . 

Therefore,  

( )( ) ( )( ) ( )( )
2

2 22 2

1 1 1

1 1tr( ( )) tr tr tr
2 2

m m m

j k j j
j k j j

sym A A A A Aλ λ λ λ
≤ < = =

⎛ ⎞⎛ ⎞ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎟⊗ = + = + = +⎜⎜ ⎟ ⎟⎜⎜ ⎟⎜ ⎟⎝ ⎠ ⎟⎜⎝ ⎠
∑ ∑ ∑ , 

and 

( )( ) ( )( ) ( )( )
2

2 2 2

1 1

1 1tr( ( )) tr tr tr
2 2

m m

j k j
j k j

anti A A A A Aλ λ λ
≤ < =

⎛ ⎞⎛ ⎞ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎟⊗ = = − = −⎜⎜ ⎟ ⎟⎜⎜ ⎟⎜ ⎟⎝ ⎠ ⎟⎜⎝ ⎠
∑ ∑ . 

 
C. Finally, recalling that the character is defined by ( )( ) trL gg Lχ = , express ( )sym U Uχ ⊗   and ( )anti U Uχ ⊗  

in terms of Uχ . 



( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( )2

2 2

( )

2 2 2

1( ) tr ( ) tr tr
2

1 1tr tr ( ) ( )
2 2

sym U U g g g g

g U Ug

g sym U U U U

U U g g

χ

χ χ

⊗ = ⊗ = +

= + = +
. 

Similarly, 

( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( )2

2 2

( )

2 2 2

1( ) tr ( ) tr tr
2

1 1tr tr ( ) ( )
2 2

anti U U g g g g

g U Ug

g anti U U U U

U U g g

χ

χ χ

⊗ = ⊗ = −

= − = −
. 

 

Q3: Mutual information: synergy, redundancy, etc. 
Consider a stimulus S that is equally likely to have one of several values, {0,1, , 1}N −… , and two 
neurons that are influenced by it.  We only concern ourselves with snapshots, so the responses 1R  and 

2R  can be considered to be binary {0,1} .  In this scenario, we can calculate the information conveyed 
by each neuron alone: 

1 1 1( ) ( ) ( , )I H S H R H S R= + −  and 2 2 2( ) ( ) ( , )I H S H R H S R= + − , 
as well as the information conveyed by the entire “population”, 

1 2 1 2 1 2( ) ( , ) ( , , )I H S H R R H S R R+ = + − .   
Note that 1 2( , , )H S R R   is the entropy of the table of 4N  entries, listing the probability 1 2( , , )p S R R  of 
that each value of S is associated with one of the four outputs patterns that 1R  and 2R  can produce 
(i.e., 1 2{ 0, 0}R R= = , 1 2{ 1, 0}R R= = , 1 2{ 0, 1}R R= = , 1 2{ 1, 1}R R= = .  This table also determines the 
joint probabilities of S and each iR , since 1 1 2 1 2( , ) ( , , 0) ( , , 1)p S R p S R R p S R R= = + =  and similarly 

2 1 2 1 2( , ) ( , 0, ) ( , 1, )p S R p S R R p S R R= = + = .  
 
Find an example of 1 2( , , )p S R R  that illustrates each of the behaviors below, or, alternatively, show 
that the behavior is impossible. It may be work in terms of the stimulus probabilities ( )p S  and the 
conditional probabilities 1 2( , | )p R R S  (the probability that particular values of 1R  and 2R  occur, 
given a value of S), noting that 1 2 1 2( , , ) ( , | ) ( )p S R R p R R S p S= . 
 
A. 1 0I > , 2 0I > ,   1 2 1 2I I I+ = +  (independent channels) 
Take 4N =  and consider S to be a two-bit binary number ( 0 00→ , 1 01→ , 2 10→ , 3 11→ ), each 
with equal probability ( ( ) 1/ 4p S = ). Have each neuron care only about one of the stimulus bits and 
ignore the other.  Since the bits (the channels) are independent, the information in each channel should 
add. 
 
To work this out as a simple example:  we can have 1R  code the first bit with perfect reliability, and 

2R  code the second bit with perfect reliability.   So we expect that 1 2 1I I= = , and 1 2 2I + = .  To verify:  
if 2 1S s s=  (as bits), then we can take 1 2( , | ) 1p R R S =  if 1 1R s=  and 2 2R s= , and zero otherwise. 
 
To calculate 1 2I + :  Express the stimulus-response relationship as a table 



2 2 2 2
1 2

1 1 1 1

0 0 1 1
( , | )

0 1 0 1
00 1 0 0 0
01 0 1 0 0
10 0 0 1 0
11 0 0 0 1

R R R R
p R R S

R R R R
S
S
S
S

= = = =
= = = =

=
=
=
=

. 

 
Since there are four equally likely inputs ( ( ) 1/ 4p S = ), the input entropy is 2log 4 2= .  Since there are 
also four equally likely outputs, the output entropy is also 2log 4 2= .  There are also 4 equally likely 
table entries, so the table entropy is 2log 4 2= .  The information 1 2 2 2 2 2I + = + − = .   
 
To calculate 1I :  Reduce the above table, by summing over values of 2R : 

1 1 1( | ) 0 1
00 1 0
01 0 1
10 1 0
11 0 1

p R S R R
S
S
S
S

= =
=
=
=
=

. 

The input entropy is 2log 4 2= .  The output entropy is 2log 2 1= .  There are 4 equally likely table 
entries, so the table entropy is 2log 4 2= .  The information 1 2 1 2 1I = + − = . 
 
The above is spelling things out in much more detail than necessary, and are all straightforward 
consequences of a basic property of information, namely, that for independent channels, information 
adds.  The idea of course generalizes to neurons that are not fully reliable (i.e., ( )i i ip R s p= = ); in this 
case, the table for 1 2I +  is 

2 2 2 2
1 2

1 1 1 1

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

0 0 1 1
( , | )

0 1 0 1
00 (1 ) (1 ) (1 )(1 )
01 (1 ) (1 )(1 ) (1 )
10 (1 ) (1 )(1 ) (1 )
11 (1 )(1 ) (1 ) (1 )

R R R R
p R R S

R R R R
S p p p p p p p p
S p p p p p p p p
S p p p p p p p p
S p p p p p p p p

= = = =
= = = =

= − − − −
= − − − −
= − − − −
= − − − −

, 

 
and the table for 1I  is 

1 1 1

1 1

1 1

1 1

1 1

( | ) 0 1
00 1
01 1
10 1
11 1

p R S R R
S p p
S p p
S p p
S p p

= =
= −
= −
= −
= −

. 

Here, 2 21 log (1 ) log (1 )i i i i iI p p p p= + + − − , which is nonzero provided 1/ 2ip ≠ . 
 
B. 1 0I > , 2 0I > , 1 2 1 2max( , )I I I+ =  (completely redundant channels) 



We can ensure that 1 2 1 2I I I+ = =  by making 1R  and 2R  identical. To spell this out: Let S be binary, 
and take 

2 2 2 2
1 2

1 1 1 1

0 0 1 1
( , | )

0 1 0 1
0 0 0 1
1 1 0 0

R R R R
p R R S

R R R R
S p p
S p p

= = = =
= = = =

= −
= −

. 

That is, the only response configurations with nonzero probability are those for which 1 2R R= , and, 

1R  and 2R  have reliability ( )ip R s p= = . 
The table for 1I  is 

1 1 1( | ) 0 1
0 1
1 1

p R S R R
S p p
S p p

= =
= −
= −

. 

For these, 1 2 1 2 2 21 log (1 ) log (1 )I I I p p p p+ = = = + + − − .  
 
C. 1 0I > , 2 0I > , 1 2 1 2 1 2max( , )I I I I I+< < +  (partially redundant channels) 
We can create partial redundancy by starting from A, and eliminating the any single input (for 
example, 11S = ), so that now, if either neuron indicates a “1” input, then the other input must be 0 
and the other neuron’s activity is uninformative.  So 3N = ; 

( 00) ( 10) ( 01) 1/ 3p S p S p S= = = = = = . 
For 1 2I + , the table is 

2 2 2 2
1 2

1 1 1 1

0 0 1 1
( , | )

0 1 0 1
00 1 0 0 0
01 0 1 0 0
10 0 0 1 0

R R R R
p R R S

R R R R
S
S
S

= = = =
= = = =

=
=
=

. 

 
The input entropy, the output entropy, and the table entropy are all 2log 3  (three equally likely 
possibilities for all), so 1 2 2 2 2 2log 3 log 3 log 3 log 3 1.585I + = + − = ≈  . 
For 1I , 

1 1 1( | ) 0 1
00 1 0
01 0 1
10 1 0

p R S R R
S
S
S

= =
=
=
=

. 

The input entropy and the table entropy are still 2log 3 , but the output entropy is 

3 2 22 / 3log (2 / 3) 1/ 3log (1/ 3) 0.918h =− − ≈ .  So 1 2 3 2 3log 3 log 3I h h= + − = , and indeed,  

3 1 2 1 2 1 2 3max( , ) 2h I I I I I h+= < < + = . 
 
This of course also extends to less-than-reliable neurons, as above. 
 
D. 1 2 1 2I I I+ > +  (“synergistic” channels) 



We can set up a scenario in which neither neuron alone has any information about the stimulus, but the 
pair does.   To do this, we caricature the idea that when 0S = , the neurons are asynchronous, but 
when 1S = , they are synchronized. 
 
For 1 2I + , the table is 

2 2 2 2
1 2

1 1 1 1

0 0 1 1
( , | )

0 1 0 1
0 0 1/ 2 1/ 2 0
1 1/ 2 0 0 1/ 2

R R R R
p R R S

R R R R
S
S

= = = =
= = = =

=
=

. 

The input entropy is 1, the output entropy is 2 (all possible outputs have probability 1/4), and the table 
entropy is 2.  So 1 2 1 2 2 1I + = + − = . 
 
But for each neuron alone, the information is 0: 

( | ) 0 1
0 1/ 2 1/ 2
1 1/ 2 1/ 2

i i ip R S R R
S
S

= =
=
=

, 

since input entropy is 1, output entropy is 1, and table entropy is 2. 
 
E. 1 2 1 2max( , )I I I+ <  (“occluding” channels) 
This is impossible, because of the Data Processing Inequality.  In detail: the response variable 1R  can 
be derived from the response variable ( )1 2,R R  by ignoring 2R . Therefore, 1 2I +  cannot be less than 1I .  
Similarly, 1 2I +  cannot be less than than 2I .  So 1 2 1 2max( , )I I I+ <  is impossible. 
 
F. 1 2 1 2min( , )I I I+ <  (“strongly occluding” channels) 
This is impossible; it is a special case of E. 
 

Q4. Mutual information with additive noise 
Here we will determine the mutual information between a Gaussian stimulus s and a response r that 
are related by r gs a= + , where g is a constant (the “gain), and a is an additive noise, uncorrelated 
with the input.  For definiteness, we assume that the stimulus s has variance SV  and the noise term is 
drawn from a Gaussian with variance AV , and that both have mean 0.  

A. For a Gaussian distribution of variance V , 
2 / 21( )

2
x V

Vp x e
Vπ

−= , calculate the differential 

entropy. 

The differential entropy is 2( ) log ( )V V VH p x p x dx
∞

−∞

= − ∫ .  Via standard steps: 

2

2
1 1 1( ) log ( ) ( ) ln ( ) ( ) ln

log(2) log(2) 22V V V V V V
xH p x p x dx p x p x dx p x dx
VVπ

∞ ∞ ∞

−∞ −∞ −∞

⎛ ⎞
= − = − = − −⎜ ⎟

⎝ ⎠
∫ ∫ ∫ . 



The first term in parentheses is just a constant; its contribution to the integral can be calculated from  

( ) 1Vp x dx
∞

−∞

=∫  (since Vp  is a probability distribution).  The second term is proportional to 2x ; its 

contribution can be calculated from 2 ( ) 1Vx p x dx
∞

−∞

=∫  (since Vp  has variance V).  So, 

( )( ) ( )2
1 1 1 1 1( ) log ( ) ln ln 2 1 ln ln 2

log 2 2 2log 2 2log 22V V VH p x p x dx V V e
V

π π
π

∞

−∞

⎛ ⎞= − = − − = + = +⎜ ⎟
⎝ ⎠∫ . 

 
 
B. How is the output distributed (i.e., what is ( )p r )?  What is its differential entropy? 
Since r gs a= + , it is a sum of two independent Gaussian components, both of mean 0. Therefore r is 
distributed as a Gaussian, of mean 0.  Its variance is the sum of the variances of the two terms: 

( ) ( )2 22 2 2 2 2 22 2R S AV r gs a gs gsa a g s g sa a g V V= = + = + + = + + = + , 

where 0sa =  because we have hypothesized that they are independent. 
Since r is distributed as a Gaussian with the above variance, its differential entropy is 

( )( )21 ln ln 2
2log 2R S AH g V V eπ= + + . 

C. What is the distribution of the output, conditional on a particular value of the input, say, 0s s= ? 
I.e., what is 0( | )p r s ?  What is its differential entropy? 
With 0s s=  given, 0r gs a= + , so 0( | )p r s  is a Gaussian with mean 0gs  and variance AV .  The mean 
does not affect the differential entropy, as it just translates the distribution.  So 
 

( )
0|

1 ln ln 2
2log 2R s AH V eπ= + . 

 
D. Calculate the mutual information between the input and the output. 
We do this by comparing the unconditional entropy of the output, RH , with the average condition 

entropy, |R sH , i.e., |( , ) ( )R R sI S R H p s H ds
∞

−∞

= − ∫ .  Since |R sH  is constant (part C), this reduces to  

0|( , ) R R sI S R H H= − , for any 0s .  Thus,  

( )( ) ( )( )
2

21 1 1( , ) ln ln 2 ln ln 2 ln
2log 2 2log 2 2log 2

S A
S A A

A

g V VI S R g V V e V e
V

π π
⎛ ⎞+ ⎟⎜ ⎟= + + − + = ⎜ ⎟⎜ ⎟⎜⎝ ⎠

 

 
E. Calculate the “signal to-noise” ratio, namely, the ratio of the variance of the signal term, gs, to the  
variance of the noise term, a. Relate this to the mutual information. 

( )2

2
2

S

A

gs VSNR g
Va

= = . So  ( )1( , ) 1
2log 2

I S R SNR= + , a classic result. 

 



F. Calculate the correlation coefficient between the input and the output, 

2 2

( )( )

( ) ( )

s s r r
C

s s r r

− −
=

− −
.  Relate this to the mutual information. 

For the numerator of C: 2( )( ) ( ) Ss s r r sr s gs a gs sa gV− − = = + = + = . 

So 
2

S S

S R S S A

gV gVC
V V V g V V

= =
+

, from which 
2 2

2 2 2

1 S S A

S

g V V V
C g V

+
=  and 2 2

1 1 A

S

V
C g V

− =  and 

  
2 2

2
2

2 2

2

1 1( , ) ln ln 1
2log 2 2log 2

1 1 1 1 1 1ln 1 ln 1 ln ln 112log 2 2log 2 1 2log 2 1 log 21

S A S

A A

g V V g VI S R
V V

C C
C C

C

⎛ ⎞ ⎛ ⎞+ ⎟ ⎟⎜ ⎜⎟ ⎟= = +⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
⎛ ⎞⎟⎜ ⎟⎜ ⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎜⎟ ⎟⎜⎜ ⎟= + = + = =− −⎟ ⎟⎜ ⎜⎟⎜ ⎟ ⎟⎜⎜ ⎟ ⎝ ⎠− −⎟⎜ ⎝ ⎠⎟−⎜ ⎟⎟⎜⎝ ⎠

, 

another classic result. 
 
 

Q5. Toy examples of ICA 
 
A. Take four data points, located at ( )1, 1± ± , (see diagram I) and consider its projection onto a unit 

vector ( )cos ,sinvθ θ θ= , to form a distribution of 4 points.  

 
How does the variance of this distribution depend on θ ?  For which projections is it maximized 
(equivalently, what direction(s) would be selected by PCA?) 
 
The projected distribution consists of the four points at positions cos sinix θ θ= ± ±  along vθ .  Their 
mean is zero.  So the variance is 
 

( ) ( ) ( ) ( )( )2 2 2 22

2 2

1 cos sin cos sin cos sin cos sin
4

cos sin 1

V x θ θ θ θ θ θ θ θ

θ θ

= = + + − + − + + − −

= + =
, 

which is independent of θ .  From the point of view of PCA, no directions are special (i.e., each 
accounts for the same amount of variance). 
 
  

x1

x2

I

x1

x2

I



B. As in A, but determine how the kurtosis of the projected distribution depends on θ . Recall, kurtosis 

is defined by 
( )4

2 3
x x

V
κ

−
= − , where ( )2

V x x= −  is the variance.  For which directions is 

kurtosis largest? 
 
Since 0x =  and 1V = , 

( ) ( ) ( ) ( )( )4 4 4 44

4 2 2 4

13 cos sin cos sin cos sin cos sin 3
4

cos 6cos sin sin 3

xκ θ θ θ θ θ θ θ θ

θ θ θ θ

= − = + + − + − + + − − −

= + + −
. 

One could graph it ( ) or, note that 

( )
( ) ( )

24 2 2 4 2 2 2 2

2 22 2

cos 6cos sin sin 3 cos sin 4cos sin 3

4cos sin 2 2cos sin 2 sin 2 2

κ θ θ θ θ θ θ θ θ

θ θ θ θ θ

= + + − = + + −

= − = − = −
. 

 
So kurtosis is largest when ( )2sin 2θ  is largest, i.e., when sin 2 1θ = ± , which happens when 

/ 2,3 / 2,...θ π π= , i.e., when / 4,3 / 4,...θ π π= .  Using maximum kurtosis as a criterion, ICA would 
identify the oblique axes as the unmixed coordinates. 
 
C. As in A, but determine how the entropy of the projected distribution depends on θ .  For which 
projections is it minimized? 
 
The projected distribution consists of the four points ( )cos sin vθθ θ± ± . At all “typical” angles, i.e., 
angles that are not multiples of / 4π , the four projection points are distinct. In these cases, each value 

( )cos sinθ θ± ±  has probability 1/ 4 , and the distribution has entropy 2
4 log (1/ 4) 2
4

− = .  

 
At atypical angles that correspond to the cardinal directions 0, / 2, ,...θ π π= , the points coincide in 
pairs, and each pair projects onto one of two values, 1± .  So they have probability 1/ 2 , and the  

distribution has entropy 2
2 log (1/ 2) 1
2

− = . 

 
At atypical angles that correspond to the oblique directions / 4,3 / 4,...θ π π= , two of the points 
coincide (and project to 0), and two do not, and project to 2± .  So the point 0 has  probability  1/ 2 , 
and each of the points 2±  have probability 1/ 4 .  The distribution has entropy 

2 2
2 1log (1/ 4) log (1/ 2) 3/ 2
4 2

− − = .   

 
So the entropy is minimized at the cardinal angles, 0, / 2, ,...θ π π= . 
 
Using minimum entropy as a criterion, ICA would identify the cardinal axes as the unmixed 
coordinates. 



 
D. Same as in A, but take five data points, located at ( )1, 1± ±  and also the origin, (see diagram II) and 

consider its projection onto a unit vector ( )cos ,sinvθ θ θ= , to form a distribution of 5 points.  How 
does the variance of this distribution depend on θ ?  For which projections is it maximized 
(equivalently, what direction(s) would be selected by PCA?) 
 
 
The projected distribution consists of five points, four at positions cos sinix θ θ= ± ±  and one at the 
origin. So the variance is 
 

( ) ( ) ( ) ( )( )2 2 2 22

2 2

1 cos sin cos sin cos sin cos sin
5

4 4cos sin
5 5

V x θ θ θ θ θ θ θ θ

θ θ

= = + + − + − + + − −

= + =
, 

again independent of θ .  So again, from the point of view of PCA, no directions are special. 
 
 
 
E. As in B, but determine how the kurtosis of the projected distribution depends on θ .  For which 
directions is kurtosis largest? 
 
Since 0x =  and 4 / 5V = , 

( ) ( ) ( ) ( )( )
( )

4 2
4 4 4 4

2

4 2 2 4

5 13 cos sin cos sin cos sin cos sin 3
(4 / 5) 4 5

5 cos 6cos sin sin 3
4

x
κ θ θ θ θ θ θ θ θ

θ θ θ θ

⎛ ⎞= − = + + − + − + + − − −⎜ ⎟
⎝ ⎠

= + + −

. 

This of course differs from the result in B only by a scale factor and an offset, so again the kurtosis is 
largest when ( )2sin 2θ  is largest, i.e., when / 4,3 / 4,...θ π π= .  Using maximum kurtosis as a criterion, 
ICA would identify the oblique axes as the unmixed coordinates. 
 
F. As in B, but determine how the entropy of the projected distribution depends on θ .  For which 
projections is it minimized? 
 
The projected distribution consists of the five points ( )cos sin vθθ θ± ±  and the origin. At all “typical” 
angles, i.e., angles that are not multiples of / 4π , the five projection points are distinct. In these cases, 

each has probability 1/ 5 , and the distribution has entropy 2 2
5 log (1/ 5) log 5 2.322
5

− = ≈ .  

x1

x2

II

x1

x2

II

x1

x2

II



 
At angles that correspond to the cardinal directions 0, / 2, ,...θ π π= , four of the points coincide in 
pairs, and there is one singleton. The two values, 1±  (the results of the coincident pairs) have 
probability 2 / 5 , and the origin has probability 1/ 5 .  So the  

distribution has entropy 2 2 2 2
2 2 1 4log (2 / 5) log (2 / 5) log (1/ 5) log 5 1.522
5 5 5 5

− − − = − ≈ . 

 
At angles that correspond to the oblique directions / 4,3 / 4,...θ π π= , three of the points coincide (and 
project to 0), and two do not, and project to 2± .  So the point 0 has  probability 3/ 5 , and each of the 
points 2±  have probability  1/ 5 .  The distribution has entropy 

2 2 2 2 2
3 1 1 3log (3/ 5) log (1/ 5) log (1/ 5) log 5 log 3 1.371
5 5 5 5

− − − = − ≈ .   

 
So the entropy is minimized at the oblique angles, / 4,3 / 4,...θ π π= . 
 
Using minimum entropy as a criterion, ICA would identify the oblique axes as the unmixed 
coordinates.  Adding one point makes a difference for entropy, but not for the kurtosis. 
 

Q6. Linear systems and feedback 
The diagram shows a linear system with input ( )S t  and output ( )R t , and the filters iF , iG , and H  
are linear filters with transfer functions ( )iF ω , ( )iG ω , and ( )H ω .  
 

F1+ F2+

G2

G1

S(t) R(t)F3

H

F1+ F2+

G2

G1

S(t) R(t)F3

H

 
A. Find the Fourier transform ( )S ω  of ( )S t  in terms of the Fourier transform ( )R ω  of ( )R t . 
Write ( )X t  as the output of 1F  and ( )Y t  as the output of 2F :  

Then (omitting the ω -argument throughout, and using the standard rules for the transfer functions of 

combined linear systems), ( )2 3 2Y F X F G Y= + , from which 2

2 3 21
FY X

F F G
=

−
. 

F1+ F2+

G2

G1

S(t) R(t)F3

H

X(t) Y(t)F1+ F2+

G2

G1

S(t) R(t)F3

H

X(t) Y(t)



Similarly, ( )1 2 1 3X F S F G X F HY= + + , and, substituting the above equation for Y , 

2
1 2 1 3

2 3 21
FX F S F G X F H X

F F G
⎛ ⎞

= + +⎜ ⎟−⎝ ⎠
, from which 

1

2
1 2 1 1 3

2 3 2

1
1

F SX
FF F G F F H

F F G

=
− −

−

. 

Using 2

2 3 21
FY X

F F G
=

−
 for Y : 

( ) ( )
1 2

1 2 1 2 3 2 1 2 31 1
F F SY

F F G F F G F F F H
=

− − −
, so 

( )( )
1 2 3

3
1 2 1 2 3 2 1 2 31 1

F F FR F Y S
F F G F F G F F F H

= =
− − −

. 

 
 
B. Write out the relationship between ( )S ω  and ( )R ω  when (a) the feedback between 2F  and 1F  is 
absent, (b) the feedback between 3F  and 2F  is absent, or (c) the feedback between 3F  and 1F  is 
absent. 
This is readily done by setting the appropriate filter in the above circuit to zero: 
 

(a) Setting 1 0G =  yields 1 2 3

2 3 2 1 2 31
F F FR S

F F G F F F H
=

− −
. 

(b) Setting 2 0G =  yields 1 2 3

1 2 1 1 2 31
F F FR S

F F G F F F H
=

− −
. 

(c) Setting 0H =  yields ( )( )
1 2 3

1 2 1 2 3 21 1
F F FR S

F F G F F G
=

− −
. 

C. Say that it is known that 1 2 3F F F F= = = , and that 1 2G G G= = .  Now consider the four 
configurations above (the full configuration, and the three configurations of part B, in which one of the 
three feedback filters has been removed).  Do they all produce different outputs? 
The transfer functions are given by: 
  

Full system: 
( )

3

22 31

R F
S F G F H
=

− −
  

 

1G  removed: 
3

2 31
R F
S F G F H
=

− −
. 

2G  removed: 
3

2 31
R F
S F G F H
=

− −
, the same as 1G  removed. 

H  removed: 
( )

3

221

R F
S F G
=

−
. 

 


