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Groups, Fields, and Vector Spaces 
  

Overview 
 

The goal is to understand the foundations of the mathematical methods for analyzing 
(neurophysiologic) data, and models of neurophysiologic processes.  The specific targets 
are Fourier analysis and principal components analysis. The main challenge is that data 
are intrinsically multivariate – a time series, or an image, or an image that changes in 
time. We have lots of choices as to how to represent these quantities mathematically – 
even if at first, this might not seem to be the case.  Some of these options, though at first 
un-natural, lead to important simplifications.   We want to understand why this is the 
case, so that these simplifications no longer seem accidental, and we can see how to both 
generalize and specialize these basic mathematical approaches. 
 
We will (temporarily) replace familiar objects with mathematical abstractions: signals, 
images, and movies will be considered elements in a “vector space.” Ordinary numbers 
will be replaced by “fields.” But the key structure is the “group”, an (abstract) set of 
transformations with that have a few key properties.  These properties formalize the 
notion that a group is a set of transformations of an object that preserves some specified 
aspects of that object’s structure. 
 
Things become interesting because of the properties of groups, and because elements can 
play multiple roles:  field operations form groups, and field elements operate on vector 
space elements in a way that forms a group. 
 

Three kinds of mathematical structures 
 
In order of increasing number of kinds of components: 

 
 Groups:  one kind of element, one operation 
 Fields: one kind of element, two operations (“addition” and “multiplication”) 
 Vector spaces:  two kinds of elements (vectors and scalars); scalars form a field, 

and operations that apply to (vector, vector) pairs and to (vector, scalar) pairs 
 

A particularly interesting kind of vector space is the set of mappings from elements of a 
group to a field.  

Structure-preserving transformations and natural coordinates 
 
These are the key to identifying natural “coordinates.” Here, “coordinates” is used in a 
very general way, essentially as “labels”. 
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Structure-preserving transformations can be sought for groups, fields, or vector spaces.  
Structure-preserving transformations always form a group, in their own right.  This is a 
useful way to understand the generic nature of groups, rather than some of the simpler 
examples (real numbers under addition), since these “simpler examples” often have 
properties that are not generic to groups. 
 
We will look at structure-preserving transformations of certain vector spaces, and use 
them to identify particularly natural basis sets for the vector spaces. We will apply this to 
vector spaces consisting of mappings from a group to a field.  Fourier theory falls out 
from this. 
 
Looking ahead:  for a group nG =   (the integers, with addition as the group operation), 

we will get the discrete Fourier transform.  For G =Â  (the real numbers, with addition 
as the group operation), we will get the Fourier transform.  For G ={rotations of a circle}, 
we will get Fourier series. 
 
Other groups lead to other useful constructs, though we won’t pursue them here.  For 
example, with  G ={rotations of a sphere}, we get spherical harmonics.  With 
G ={permutations of n objects}, translations in Euclidean n-space, or translations and 
rotations in Euclidean n-space, we get other useful things.  
 

 

Groups 

Group axioms 
A group is a set of elements a, b, …, along with an operation   that is a mapping 
from a pair of elements to a third element, i.e. a b c=  (formally, : G G G´  ), 
for which the following hold: 
 
G1: Associativity: ( ) ( )a b c a b c=    . 
G2: Identity: There is a special element e GÎ  for which, for every a in G, a e a=  
and e a a= . 
G3: Existence of inverses.  For every a in G, there is a corresponding group element 

1a-  for which 1a a e- =  and 1a a e- = . 
 
 

Other properties that many groups have, but are not required: 
 
The group operation need not be commutative (i.e., satisfy a b b a=  ).  A 
commutative group is also called an Abelian group. 
 
A group may have a finite or an infinite number of elements. 
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An infinite group may, or may not, have a notion of “nearness” of elements.  A group 
which has a notion of nearness (appropriately defined) is called a Lie group.  (The notion 
of “nearness” must be preserved by the group operation.  That is, if a is near b, then a c  
must be near b c  (and similarly for c a  and c b ). 
 
A set that satisfies G1 but not G2 or G3 is a “semigroup”.  You can always make it 
satisfy G2 by adding an identity element, if it doesn’t already have one. 

Examples of groups 
 
Some examples of groups in which the group operation is familiar addition or 
multiplication 

 The (positive and negative) integers  ,   is ordinary addition 
 The rational numbers  ,   is ordinary addition 

 The real numbersÂ ,   is ordinary addition 
 The complex numbers ,   is ordinary addition 
  ,  Â , or   with 0 omitted,   is ordinary multiplication 

 m n´  matrices with entries drawn from  ,  ,  Â , or  ,   is matrix addition 

 m m´  invertible matrices with entries drawn from  ,  Â , or  ,    is matrix 
multiplication 

 
Some examples of groups in which the group operation is the composition of 
transformations: 
 

 Rotations of a regular k-gon 
 Rotations of a circle (limiting case of the above, “ k ¥”) 
 Rotations and reflections of a regular k-gon 
 Rotations and reflections of a circle 
 Translations along a line 
 Translations and rotations in Euclidean n-space 
 Rotations of an n-sphere 
 Permutations of a set of n objects 

 
What kinds of structure do the above groups preserve? 
 
Which of the above are commutative?   
Are any of the above abstractly identical? 
Which of the have an infinite number of  elements?  Of those, which have a notion of 
“nearness”? 
 
It will be very helpful to identify properties of groups that apply both to finite groups and 
to infinite ones – especially if we are thinking of the group element as representing 
translation in time or in space. 
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Some basic group properties 
 
We’re doing this not just to provide “practice” with the group axioms, but also because of 
what they mean. 
 
There is only one identity element.  For if e and f were both identity elements, then 
e f e=  by G2, since f is an identity 
e f f=  by G2, since e is an identity 
from which it follows that e f= . 
 
An element can have only one inverse.  For if a b e= , then 
b e b=   by G2, since e is the identity 

1( )b a a b-=    by G3, since 1a-  is an inverse of a 
1 ( )b a a b-=    by G1 
1b a e-=   since we assumed that a b e=  

and hence, 
1b a-=  by G2, since e is the identity. 

 
No element can have a “private” left or right identity.  In other words, if an element f is 
an identity for some group element a, then it is the identity e for the whole group. For if 
a f a=  (f is a “right identity”), then 
f e f=   by G2, since e is the identity 

1( )f a a f-=    by G3 
1 ( )f a a f-=    by G1 
1f a a-=   since we assumed that f was a private identity for a, i.e., a f a= , 

and hence, 
f e= , i.e., f is the group identity. (A similar argument works if we had assumed 
f a a= , i.e., that f is a “left identity”).  Another consequence of this (that we will use 

below) is that if f f f= , then f e= .  This is because f f f=  means that f is a 
“private: identity for f. 
 
The group operation is one-to-one. That is, if a c b c=  , then a b= .  This, essentially, 
allows us to “cancel.” Equivalently, if x z y= , then 1x y z-=   
To show this: if a c b c=  , then  

1 1( ) ( )a c c b c c- -=    ,  then 
1 1( ) ( )a c c b c c- -=     by G1, 

a e b e=   by G3 
a b=  by G2 
 
The inverse of the product is the product of the inverses, in reverse order.  To show this, 
we need to show that 1 1 1( )a b b a- - -=  , i.e., that 1 1( ) ( )a b b a e- - =   . 
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( ) ( )1 1 1 1 1 1( ) ( ) ( ) ( )a b b a a b b a a b b a- - - - - -= =         , each step by G1 

( )1 1 1 1( ) ( )a b b a a e a a a e- - - -= = =      , by G3, G2, and G3. 

 

Intrinsic properties of group elements 
 
The “order” of a group element a is the least (nonzero) integer n for which an n-fold 
product a a a   is the identity, i.e.,  na e= .  Note that associativity means that we 
don’t have to specify how to put parentheses around a a a  ; any way of doing it 
gives the same answer. 
 
For finite groups, every element has a (finite) order.  To see this, consider the series 

0a e= , a1, a2, a3,….  Since the group is finite, eventually it must repeat.  So say 
m na a= . Then (assuming m n< ),  
m na a=  implies 

( )1 1 1 1( ) ( ) ( ) ( ) ( ) ( )m m m n m m n m m m n m n me a a a a a a a a a a a- - - - - - -= = = = =       

so the order of a is at most n m- . 
 
We can do better than this:  for a finite group, the order of a group element is a factor of 
the size of the group. Here, size means number of elements, #( )G . 
 
We show this by showing something more general.  First, define a subgroup:  a subgroup 
of a group G is a subset of H of G that is, in its own right, a group. (Similarly:  subfield, 
subspace, etc.) Note that the associativity law is automatic, so what must be shown is that 
H is closed under the group operation, and that it contains the identity (of G), and 
inverses of everything in itself. 
 

Note also that if a is an element of G, and n is its order, then { }2 1, , , nH e a a a -=   is a 

subgroup of G, and #( )H n= .  (Check: what is the group operation table for H? are  
inverses always in H?) H is also known as a “cyclic” group. 
 
So if we can show that the size of every subgroup is a factor of the size of the group, then 
we will have also shown that the order of every element is a factor of the size of the 
group. 
 
We’ll show this (that #( )H  is a factor of #( )G ) by a counting argument:  we will divide 
G up into pieces, each of which have the same size as H. The pieces are called “cosets. ”  
The definition of a coset: for any element b in G, the coset Hb is the set of all of the 
elements g of G that can be written in the form g h b=  , for some element h in H.  
 
Every element in G is in some coset: g is in the coset Hg, since g e g=  , and the 
identity, e, is in H. 
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So we now have to show that the cosets, are non-overlapping.  That is, either two cosets 
are disjoint, or they are identical.  Say Hb and Hc are two cosets that are not disjoint.  
Then there is at least one element in common, i.e., for some h¢  and h¢¢  h b h c¢ ¢¢=  . 
This means that 1( )b h h c-¢ ¢¢=   .  Now we can see that every element in Hb is 
contained in Hc: A typical element g h b=   is also 

( ) ( )( )1 1( ) ( )g h h h c h h h c- -¢ ¢¢ ¢ ¢¢= =       (after several applications of the 

associative law); the latter shows that g is also in Hc. 
 
So G is a disjoint union of cosets of any subgroup H.  So its size must be a multiple of the 
size of H. 
 
Several notes, in order of increasing importance to us: 
 
Here we used “right cosets”.  We also could have used “left cosets” bH.  Note that a left 
coset bH is not necessarily the same as the right coset Hb.   For non-commutative groups, 
a left coset and a right coset can overlap but the overlap can be only partial. 
 
We can use facts about the order of group elements as an elementary way to establish the 
possibilies for the structure of groups of a given size.  For prime numbers p, there is only 
one group (abstractly) that has size p, namely, the group generated by an element of order 
p.  We can think of this as the rotations of a p-gon. For non-prime sizes, there are other 
possibilities; see homeworks for a few.  This is the beginning of the broad problem of 
characterizing all possible groups. 
 
We used a counting argument here, and counting arguments won’t work for infinite 
groups.  But the notion of “disjoint union” does work; even for infinite groups one can 
think of cosets as a way of decomposing a larger group G into “slices,” each of which is 
based on the template of the smaller group H. This basic idea is a model for building 
larger structures out of smaller ones,  Think of G as a space, H as a special plane in G that 
runs through the origin, and the cosets of H  as planes that are parallel to G.  
 
This “coset decomposition” is the first instance of something that is easy to do with a 
finite group, and can be thought of as a toy example of a more general procedure that can 
be carried out for an infinite group. Another example is summing or averaging over the 
group.  But infinite groups can be discrete or continuous, and if continuous, they can have 
a finite volume or an infinite volume (integers with ordinary addition is infinite but 
discrete; rotations of the circle is continuous and finite “volume”; reals with addition is 
continuous and infinite “volume”).   Many aspects of the finite case are typically generic, 
but we need to keep in mind that some math – which we will skip – is necessary to prove 
this.  

Relationships among groups: homomorphisms 
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A (group) homomorphism is a structure-preserving map between two groups.  
Formally: if G and H are groups (H not necessarily a subgroup of G), then : G Hj   is 
a mapping from G to H for which  
 

1 2 1 2( ) ( ) ( )g g g gj j j=  .  Note that on the left side of the equation,   is the group 

operation in G; on the right,    is the group operation in H. 
 
An onto homomorphism j  (a.k.a. “surjective” homomorphism) is a homomorphism 
from G and H for which all members of H are some ( )gj . 
 
An isomorphism  is an “onto” homomorphism j  from G to H if there is also an “onto” 

homomorphism 1 : H Gj-  ,  for which 1( ( ))g gj j- =  (and also, 1( ( ))h hj j- = ).  
 
An automorphism is an isomorphism from a group G to itself. 
  
Each of these can also be defined in an analogous fashion for other algebraic structures, 
such as fields and vector spaces.  

Examples of homomorphisms 
 
The log is a homomorphism from 0Â>  (with   as multiplication) to Â  (with   as 
addition). 
 

( ) 2n nj =  is a homomorphism from   (with   as addition) to   (with   as addition). 
 

( )n nj =-  is a homomorphism from   (with   as addition) to   (with   as addition). 
 

( ) zz ej =  is a homomorphism from   (with   as addition) to  nonzero elements of    
(with   as multiplication) 
 
The parity of a permutation is a homomorphism from any permutation group (with   as 
composition) to { 1, 1}G = + -  (with   as  multiplication). Briefly, the “parity” of a 
permutation is  defined as follows.  Any permutation can be built from a sequence of 
pairwise swaps.  If the number of pairwise swaps is even, the parity is +1.  If the number 
of pairwise swaps is odd, the parity is -1.  (One needs to show that this is in fact well-
defined.  We’ll do that much later.) 
 
Which of these are onto?  Which are isomorphisms? Which are automorphisms? 
 

The kernel 
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The kernel of a homomorphism : G Hj   is the set of elements of G for which 

( ) Hg ej = . Here, He  is the identity for H. (Unfortunately, there is no obvious 

relationship to other uses of the term “kernel”.) 
 
The kernel of a homomorphism is always a subgroup.  It’s obviously a subset, so we need 
to show that G2 and G3 hold.  
 
To show G2 (that there is an identity), we need to show that e  is in the kernel.  That is, 
we need to show that ( )ej  is the identity for H.  ( ) ( ) ( ) ( )e e e e ej j j j= =  .  So 

( ) He ej = , since it is the “private” identity for ( )ej . 

  
To show G3 (that if g is in the kernel, then so is 1g- ), we need to show that ( )g ej =  

implies that 1( )g ej - = .  To do this: 
1 1 1( ) ( ) ( ) ( ) ( )H He g g g g g e ej j j j j- - -= = = =   .  (Second equality uses the fact 

that a homomorphism is structure-preserving, last equality uses what we just showed, that 
( ) He ej = . 

 

Objects playing several roles: automorphisms 
 
We now show how the set of automorphisms of a group G can in turn be considered a 
group, which we will call ( )A G .  We need to define the group operation in ( )A G , which 
must take a pair of automorphisms to a third.  We’ll use composition. (Here, we will use 
  to denote the group operation in ( )A G , and justaposition (e.g., gh) to denote the group 

operation in G.)  Formally, to define 1 2j j , we need to define how it acts on an element 

of G , and to show that this definition of 1 2j j  is itself an automorphism: 

( )1 2 1 2( ) ( )g gj j j j= . 

 
To show that this is an automorphism: 
 

( )1 2 1 2( ) ( )gh ghj j j j=  (by the definition of the group operation in ( )A G ) 

( )1 2 2( ) ( )g hj j j=  (since 2j  is a homomorphism) 

( ) ( )1 2 1 2( ) ( )g hj j j j=  (since 1j  is a homomorphism) 

( )( )1 2 1 2( ) ( )g hj j j j=    (by the definition of the group operation in ( )A G , applied to 

each factor) 
 
We next need to show that this operation leads to a group structure on ( )A G .  
Associativity follows from the fact that the operation is a composition.  The presence of 
an identity  in ( )A G  follows from the fact that the trivial map from G to itself is an 
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automorphism (but not an interesting one).  The presence of inverses in ( )A G  follows 
from the fact that an automorphism has an inverse (since it is an isomorphism).   
 
A special set of automorphisms:  the “inner” automorphisms.  For any element a  in G, 
let’s look at the map 1( )g gaj a a-= .  It’s easy to see that aj  is an automorphism of G: 

It preserves structure: 
1 1 1 1 1( ) ( ) ( ) ( )( ) ( ) ( )gh gh g h g h g ha a aj a a a a a a a a a a j j- - - - -= = = = . 

 
To see that the “inner” automorphism group contains identities and inverses (as 
automorphisms), we need to see how inner automorphisms compose: 

( ) ( ) 1 1 1 1( ) ( ) ( ) ( ) ( )g g g g g ga b a b a abj j j j j b b ab b a ab ab j- - - -= = = = =  

so 

a b abj j j=  (where the subscript on the right is the group operation in G). 

As a consequence, ( ) 1

1

a a
j j -

-
= , i.e., aj  is invertible and its inverse is also an inner 

automorphism. 
 
We can think of the “inner” automorphisms as a model for change of coordinates. 
 
Summing up: For any group G, we have a group of automorphisms ( )A G , and a 
homomorphism from G into a subgroup of ( )A G , the “inner” automorphisms:  This 
mapping, the adjoint map, : ( )Adj G A G , takes a group element a  into the inner 

automorphism aj . The action of aj  on G  is defined by 1( )g gaj a a-= .  

 
What is the kernel of Adj? Say g  is in the kernel of Adj.  This means that gj  is the 

identity transformation on G.  That is, ( )g ggj =  for all g in G.  That is, 1g gg g- =  for 

all g in G.Or, g gg g= .  In other words, the kernel of Adj is the set of elements g  in G 
that commute with all elements in G. (This is known as the “center” of G).  
 
If G is commutative (i.e., everything commutes), the center of G is G itself, and Adj is 
trivial – in other words, all inner automorphisms are the identity.  But there may still be 
some nontrivial members of ( )A G . 
 

Examples of automorphisms, inner automorphisms, etc. 
 
  (with   as addition):  It is commutative, so all inner automorphisms are trivial.  But 

( )n nj =-  is an automorphism (that is nontrivial, and not an inner automorphism). 
 
Invertible m m´  matrices:  For generic matrices M, 1( )M G MGMj -=  is a nontrivial 

inner automorphism.  The center of the group of invertible m m´  matrices, i.e., the 
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matrices that commute with all others, and therefore lead to the trivial inner 
automorphisms, are multiples of the identity matrix. 
 


