Groups, Fields, and Vector Spaces
Homework \#1 (2012-2013)
Q1: Group or not a group?
Which of the following are groups? If a group, is it commutative? Finite or infinite? If infinite, is it discrete or continuous? If not a group, where does it fail?
A. The even integers $\{\ldots-6,-4,-2,0,2,4,6 \ldots\}$, under addition
B. The set of all rotations of a sphere, under composition
C. The set of all reflections of a sphere, under composition
D. The set of all rotations and reflections of a sphere, under composition
E. The set of all transformations T_{p} defined by $T_{p}(x)=x^{p}$, under composition
F. The set of all reflections and rotations of a rectangle, under composition

Q2. Dihedral groups (one step beyond cyclic groups)
The standard group operation is denoted by juxtaposition.
Consider the following distinct elements: e, a, and r. Assume that they compose in a way that obeys the associative law, that e is the identity, that a is of order 2 , and that r is of order $n \geq 2$. (Only $n \geq 3$ is interesting, though.) Suppose further that a and r satisfy $r a=a r^{n-1}$, and that the elements of the set $S=\left\{e, r, r^{2}, \ldots, r^{n-1}, a, a r, a r^{2}, \ldots, a r^{n-1}\right\}$ are all distinct. Show that this set constitutes a group, of size $2 n$. (This is known as the "dihedral group" D_{n}.)

Q3: Normal subgroups
The standard group operation is denoted by juxtaposition.
Definition: A subgroup H of G is said to be a "normal" subgroup if, for any element g of G and any element h of H, the combination $g h g^{-1}$ is also a member of H.
A. Show that if φ is a homomorphism from G to some other group R, then the kernel of φ is a normal subgroup of G. (In class, we will show that the kernel must be a subgroup, here, assume that it is, and show that it is normal as well.)
B. Show that if H is a normal subgroup and b is any element of G, then the right coset $H b$ is equal to the left coset, $b H$.
C. Show that if H is a normal subgroup, then any element of the right coset Hb , composed with any element of the right coset $H c$, is a member of the right coset Hbc , with the product bc carried out according to the group operation in G.
D. Consider the mapping from group elements to cosets, $\varphi(b)=H b$. Show that this constitutes a homomorphism from the group G to the set of cosets, with the group operation on cosets defined by $(H b) \circ(H c)=H b c$.
E. Find the kernel of the homomorphism in D.

