Groups, Fields, and Vector Spaces

Homework \#2 (2012-2013)
Q1. Example homomorphisms.
A. Define the map $\varphi_{n}(x)$ from the integers \mathbb{Z} to the set $\mathbb{Z}_{n}=\{0, \ldots, n-1\}$ as the remainder of x, when divided by $n . \mathbb{Z}$ is a group under ordinary addition; \mathbb{Z}_{n} is a group under addition " $\bmod n$ " (i.e., $x \circ y$ is defined as the remainder of $x+y$ when divided by n). Is φ_{n} a homomorphism? If so, what is the kernel?
B. Consider the cyclic group with n elements, i.e., $C=\left\{e, r, r^{2}, \ldots, r^{n-1}\right\}$, with e the identity and r obeying $r^{n}=e$, and $n \geq 2$. (We can think of this group as being the rotations of the regular n gon.) Show that $\phi_{k}(g)=g^{k}$ is a homomorphism. When is it "onto"? When is it an automorphism?
C. Is the map $\varphi(j)=r^{j}$ from $\mathbb{Z}_{n}=\{0, \ldots, n-1\}$ (with group operations defined in part A) to C, the cyclic group defined in part B, a homomorphism? Is it an isomorphism?
D. Homomorphisms involving the dihedral group. This is the group of rotations and reflections of the regular n-gon. Abstractly, it is $S=\left\{e, r, r^{2}, \ldots, r^{n-1}, a, a r, a r^{2}, \ldots, a r^{n-1}\right\}$, where e is the identity, r obeys $r^{n}=e$ and corresponds to a rotation, and a obeys $a^{2}=e$ and corresponds to a reflection. a and r satisfy $r a=a r^{n-1}$.

Is $\rho(g)=g^{2}$ a homomorphism? If so, what is its kernel?
E. Consider the map ψ from S (defined in D) to $P=\{-1,+1\}$, (where the group operation for P is multiplication), defined as follows: for $g=e$ or $g=r^{k}, \psi(g)=+1$. For $g=a r^{k}$ $(k=1, \ldots, n-1), \psi(g)=-1$. Is ψ a homormorphism from S to P ? If so, what is its kernel?

Q2. Extensions of finite fields
Recall that \mathbb{Z}_{2} is the field containing $\{0,1\}$, with addition and multiplication defined (mod 2$)$. Consider the polynomial $x^{4}+x+1=0$. This has no solutions in \mathbb{Z}_{2}, so let's add a formal quantity ξ for which $\xi^{4}+\xi+1=0$ (and which satisfies the associative, commutative, and distributive laws for addition and multiplication with itself and with $\{0,1\}$), and see whether it generates a field.
A. Using $\xi^{4}+\xi+1=0$, express ξ^{r} in terms of $1, \xi, \xi^{2}$, and ξ^{3} for $r=1, \ldots, 15$.
B. Using part A, show that the powers of ξ generate a field of size 16. This is $G F(2,4)$.
C. Show that $\varphi(\xi)=\xi^{2}$ is an automorphism of $G F(2,4)$.

