Homework \#2 (2012-2013), Answers
Q1. Consider the star graph with $N+1$ vertices (one central vertex, each connected to the N peripheral vertices). Use symmetry considerations to find the eigenvalues and eigenvectors of its graph Laplacian.

The full permutation group on N elements has a representation in the vector space of functions on the graph, via relabeling of the N peripheral vertices. So every eigenvector of the Laplacian must lie entirely within one of its irreducible subspaces. The functions on the graph are a space V of dimension $N+1$. There is an "obvious" two-dimensional subspace that is left invariant by these mappings - the subspace of functions that have a value x_{c} on the central vertex, and another value x_{p} on all peripheral nodes. This contains the eigenvector with an eigenvalue of zero (the vector $\overrightarrow{1}$, corresponding to $x_{c}=x_{p}=1$).

This invariant subspace must contain another eigenvector, orthogonal to $\overrightarrow{1}$. Orthogonality requires that this eigenvector \vec{w} must have coordinates proportional to $x_{c}=N$ and $x_{p}=-1$.

The Laplacian maps the value at the central node to $x_{c}{ }^{\prime}=N x_{c}-N x_{p}$, and the value at a peripheral node to $x_{p}{ }^{\prime}=x_{p}-x_{c}$. With $x_{c}=N$ and $x_{p}=-1, x_{c}{ }^{\prime}=N^{2}+N=(N+1) x_{c}$, and $x_{p}{ }^{\prime}=-1-N=(1+N) x_{p}$, so $L \vec{w}=(N+1) \vec{w}$, and the eigenvalue is $N+1$.

Since V is of dimension $N+1$, there are $N-1$ dimensions unaccounted for. This corresponds to the ($N-1$)-dimensional irreducible representation of the symmetric group. We can see this by considering how the permutation group acts on the N peripheral vertices - it is just like the way it acts on the complete graph, an N-dimensional representation that contains one copy of the identity representation(corresponding to \vec{w}), and an irreducible $N-1$-dimensional representation. The $N-1$-dimensional representation lies in a subspace in which the values at the peripheral vertices sum to zero: for example, a vector \vec{y} with $x_{1}=1, x_{2}=-1$, and the remainder zero. One can readily calculate that $L \vec{y}=\vec{y}$.

As a check, (see Q1 of GTM Homework \#1), we have one eigenvalue equal to $N+1$, and $N-1$ eigenvalues equal to 1 , for a total of $2 N$, which is twice the number of edges in the star graph.

