Linear Systems, Black Boxes, and Beyond

Homework #1 (2012-2013)

Q1: Fourier transforms, derivatives, and integrals

Setup is
$$\hat{s}(\omega) = \int_{-\infty}^{\infty} s(t)e^{-i\omega t}dt$$
, with $s(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} \hat{s}(\omega)e^{+i\omega t}d\omega$.
A. For $q(t) = \frac{d}{dt}s(t)$, find $\hat{q}(\omega)$.
B. For $q_n(t) = \frac{d^n}{dt^n}s(t)$, find $\hat{q}_n(\omega)$.
C. For $z(t) = \int_{-\infty}^{t} s(\tau)d\tau$, find $\hat{z}(\omega)$.
D. Apply C to $s(t) = \delta(t)$ to find a function whose Fourier transform, except possibly at 0, is

$$\frac{1}{i\omega}$$
.

Q2: Fourier transforms and moments

Setup is $\hat{s}(\omega) = \int_{-\infty}^{\infty} s(t)e^{-i\omega t}dt$, with $s(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{s}(\omega)e^{+i\omega t}d\omega$, but now we are thinking of *s* as a probability distribution.

A. Write the normalization condition $\int_{-\infty}^{\infty} s(t)dt = 1 \text{ in terms of } \hat{s}(\omega).$ B. Write the mean (first moment) $\langle t \rangle = \int_{-\infty}^{\infty} ts(t)dt$ in terms of $s'(\omega) = \frac{d}{d\omega}\hat{s}(\omega).$ C. Write the variance (second moment) $\langle (t - \langle t \rangle)^2 \rangle = \langle t^2 \rangle - \langle t \rangle^2 = \int_{-\infty}^{\infty} t^2 s(t)dt - \left(\int_{-\infty}^{\infty} ts(t)dt\right)^2$ in terms of $s'(\omega) = \frac{d}{d\omega}\hat{s}(\omega)$ and $s''(\omega) = \frac{d^2}{d\omega^2}\hat{s}(\omega).$ Q3: The half-infinite cable (repeating indefinitely to the right)

This is to be viewed as a network of resistors and capacitors. Calculate the impedance of the system (input applied across terminals at left) in terms of the impedances $F(\omega)$, $G_1(\omega)$, and $G_2(\omega)$ for F, G_1 , and G_2 .

Hint: Let the composite system be H. Note the following, and then write an equation for $H(\omega)$.

Q4. Boxcar smoothing

Boxcar smoothing refers to convolution with the function s(t), where $s(t) = \begin{cases} \frac{1}{L}, |t| \le L/2\\ 0, |t| > L/2 \end{cases}$. Find

its Fourier transform. What does it look like? Is this a good way to smoothe?