Q1: Fourier transforms, derivatives, and integrals
Setup is $\hat{s}(\omega)=\int_{-\infty}^{\infty} s(t) e^{-i \omega t} d t$, with $s(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{s}(\omega) e^{+i \omega t} d \omega$.
A. For $q(t)=\frac{d}{d t} s(t)$, find $\hat{q}(\omega)$.
B. For $q_{n}(t)=\frac{d^{n}}{d t^{n}} s(t)$, find $\hat{q}_{n}(\omega)$.
C. For $z(t)=\int_{-\infty}^{t} s(\tau) d \tau$, find $\hat{z}(\omega)$.
D. Apply C to $s(t)=\delta(t)$ to find a function whose Fourier transform, except possibly at 0 , is $\frac{1}{i \omega}$.

Q2: Fourier transforms and moments
Setup is $\hat{s}(\omega)=\int_{-\infty}^{\infty} s(t) e^{-i \omega t} d t$, with $s(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{s}(\omega) e^{+i \omega t} d \omega$, but now we are thinking of s as a probability distribution.
A. Write the normalization condition $\int_{-\infty}^{\infty} s(t) d t=1$ in terms of $\hat{s}(\omega)$.
B. Write the mean (first moment) $\langle t\rangle=\int_{-\infty}^{\infty} t s(t) d t$ in terms of $s^{\prime}(\omega)=\frac{d}{d \omega} \hat{s}(\omega)$.
C. Write the variance (second moment) $\left\langle(t-\langle t\rangle)^{2}\right\rangle=\left\langle t^{2}\right\rangle-\langle t\rangle^{2}=\int_{-\infty}^{\infty} t^{2} s(t) d t-\left(\int_{-\infty}^{\infty} t s(t) d t\right)^{2}$ in terms of $s^{\prime}(\omega)=\frac{d}{d \omega} \hat{s}(\omega)$ and $s^{\prime \prime}(\omega)=\frac{d^{2}}{d \omega^{2}} \hat{s}(\omega)$.

Q3: The half-infinite cable (repeating indefinitely to the right)

This is to be viewed as a network of resistors and capacitors. Calculate the impedance of the system (input applied across terminals at left) in terms of the impedances $F(\omega), G_{1}(\omega)$, and $G_{2}(\omega)$ for F, G_{1}, and G_{2}.

Hint: Let the composite system be H. Note the following, and then write an equation for $H(\omega)$.

Q4. Boxcar smoothing
Boxcar smoothing refers to convolution with the function $s(t)$, where $s(t)=\left\{\begin{array}{l}\frac{1}{L},|t| \leq L / 2 \\ 0,|t|>L / 2\end{array}\right.$. Find its Fourier transform. What does it look like? Is this a good way to smoothe?

