Linear Systems, Black Boxes, and Beyond

Homework #2 (2012-2013), Answers

Q1: Some standard windowing functions. For each of the windowing functions W (t) below
(each nonzero only on [—L/2,L/2]), calculate their Fourier transforms

W (w) = f W (t)e “'dt and characterize the asymptotic behavior of ‘V\? (w)‘2 for large |w|. As

mentioned in class, each windowing function represents a tradeoff between the sharpness of the
~ 2
peak of ‘W (w)‘ and the heaviness of its tails.

Wigrear (1) = for [t|<L/2,0otherwise
2, 2t _
Wgy (t) = E(l_T) for [t| <L/2, 0 otherwise

C. Weasingpen (1) = [1+ cos[ZL ]J for [t| <L/2, 0 otherwise

In each case, W is an even-symmetric function, so we can write

L/2

W (w) = f W (t)e “dt = 2 f W (t) cos(wt)dt = 2 f W (t) cos(wt)dt .

For A,

L/2

W, (w) = f cos(wt)dt ——sm(wt) 2

. L ~ 2 ,
:Ism(%), ) ‘Wboxcar(w)‘ o |w|* for large |u].

For B,
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Wtent (w) = I‘[
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[1— E] cos(wt)dt :i[1
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o | using
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,\ 2 4
Wtem(w)‘ o|w[ " for large |w].

1—cos¢p = Zsinzz at the last step, so



Note that W

tent

() = (2Wogrcar * 2Wioer ) (21) , .., the tent a rescaled convolution of the boxcar
2

with itself. So we can check: W, (w) = [Wtem (%)]

For C,

L/2 L/2

Wcosinebell (w) = %f [1+ COos [Z—E—t]]COS(wt)dt :%f

0 0

dt

COS(wt)-l-Ecos 2—7T+w t +£cos Z—W—w
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SO Weosinepelr (w)‘ (08 |W| for |arge |u)| .



