
Linear Systems,  Black  Boxes, and Beyond 
 
Homework #3 (2012-2013), Answers 
 
Q1:  Spectra of “gamma” renewal processes.  A kth-order gamma process at rate λ  can be 
constructed by (a) creating a “hidden” Poisson process of rate kλ , and (b) taking every kth 
spike.   
 
A. Write down the Fourier transform of the renewal density for this process.  
 
For the underlying Poisson process of rate kλ , the renewal density is given by 
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by definition, the gamma process looks at every kth event, its renewal density is the k-fold 
convolution of this, so  
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B. Write down the power spectrum for this process.  
 
From the general formula for the power spectrum of a Poisson process, 
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C.  Graph the power spectrum for { }1,2,4,8,16,32,64,128k = . 
For 1λ= : 



 
 
Here’s the code: 
% spec_gammaproc_demo: show the spectrum of gamma processes 
% 
if ~exist('dw') dw=0.001; end 
if ~exist('wmax') wmax=50; end 
if ~exist('klist') klist=[1 2 4 8 16 32 64 128]; end 
if ~exist('lam') lam=1; end 
if ~exist('colors') colors='krmbcg';end 
w=[dw:dw:wmax]; 
figure; 
set(gcf,'Position',[100 100 800 700]); 
ls=[]; 
hl=[]; 
for ik=1:length(klist) 
    c=colors(mod(ik-1,length(colors))+1); 
    k=klist(ik); 
    p=(1./(1+i*w/(k*lam))).^k; 
    s=lam*(1-abs(p).^2)./(abs(1-p)).^2; 
    hl(ik,1)=semilogy(w/(2*pi),s,c); 
    hold on; 
    ls=strvcat(ls,sprintf('k=%3.0f',k)); 
end 
xlabel('omega/(2*pi)'); 
set(gca,'XLim',[0 floor(wmax/(2*pi))]); 
ylabel('power'); 
legend(hl,ls,'Location','SouthEast'); 
 
Q2: A common noise source feeding multiple observed signals. Consider N observed signals, 

( )iX t , constructed as follows:  There is a common noise source ( )C t , and ( )iX t  results from 
the addition of  this signal, as filtered by iL , to a “private” noise source ( )iP t . The common 
noise sources and the private noise sources are all assumed to be independent of each other. 



 
A. Calculate the spectra ( )

iXP ω  and the cross-spectra ( )
i jX XP ω  in terms of the spectra of the 

common noise, ( )CP ω , the private noises ( )
iPP ω , and the transfer functions ( )iL ω .  The spectra 

and coherences are the elements of the cross-spectral matrix. 
 
Working from the spectral estimates for iX : 
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which imples that  
( ) ( )( ) ( )

i jX X i j CP L L Pω ω ω ω= . 
For the spectra ( i j= ) we find the cross-term involving the private noise sources does not go 
away, since it is a product of a private noise term with itself: 
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which implies that  
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B. In the special case that all of the private noises are 0, calculate the global coherence.  As in 
Cimenser et al. (PNAS 2011, http://www.pnas.org/content/108/21/8832.full), the global 
coherence is the ratio of the first eigenvector of the cross-spectral matrix, to its trace. 
 
Here, the elements of the cross-spectral matrix ( )ijM ω  are ( ) ( )( ) ( )
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This matrix is of rank 1, since ( ) ( ) ( )ij i jM A Aω ω ω ∗= , where ( )( ) ( )i i CA L Pω ω ω= .  So there is 

only one nonzero eigenvalue, namely, ( )
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is the sum of the eigenvalues) is also equal to this quantity, and the global coherence is 1. 
 
C. Calculate the global coherence under the assumption that common noise source ( )C t  is 0, 
and all of the private noise sources have the same power spectrum ( )PP ω .  
 
Here, ( ) 0CP ω =  so the elements of the cross-spectral matrix are given by 

( ) ( ) 0
i jij X XM Pω ω= =  if i j≠  and, on the diagonal, ( ) ( ) ( )

iii X PM P Pω ω ω= = . So the cross-

spectral matrix is ( )PP ω  times the identity matrix.  All N eigenvalues are therefore ( )PP ω , so the 
global coherence is 1/ N . 
 


