
Linear Transformations and Group Representations 
 
Homework #1 (2012-2013), Answers 
 
Q1: Eigenvectors of some linear operators in matrix form (also see Homework from “Algebraic 
Overview” (2008-2009)) 
 
In each case, find the eigenvalues, the eigenvectors, the dimensions of the eigenspaces, and 
whether a basis can be chosen from the eigenvectors. 
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First, use the determinant to find the eigenvalues.  21
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det( ) 0zI A   requires 1z =  , so the only eigenvalue of A is 1. 

Say V has basis elements e1 and e2, expressed as columns 1
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.  Then 1 1Ae e=  

and 2 1 2Ae re e= + .  So e1 is an eigenvector of eigenvalue 1. To look for any others: Let 

1 2v ae be  .  Then 1 2 1 1 2 1 2( ) ( ) ( )Av A ae be ae b re e a br e be        . 

Av v   implies 1 2 1 2( )ae be a br e be    .  Since e1 and e2 are linearly independent (they form 

a basis), their coefficients must be equal.  For e1, this requires a a br= + , i.e., 0b = .  For e2, 
the coefficients are always equal.  So the only eigenvalues have 0b = , i.e., the only eigenvalues 
are e1 and its multiples.   
 
So there is one eigenvalue, 1, whose eigenspace has dimension 1, spanned by the eigenvector 
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.  Since A operates in a two-dimensional vector space, the eigenvectors cannot form a 

basis. 
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 (assume 0q r  ). 

Again, first use the determinant to find the eigenvalues.  
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. det( ) 0zI B   solves for z q r=  , so these are 

the eigenvalues of B.  To find the eigenvectors:  As in part A, say 1
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 and v is 

an eigenvector with 1 2v ae be  .  1 1 2Be qe re= + .  2 1 2Be re qe= + .  So 

1 2 1 2 1 2 1 2( ) ( ) ( ) ( )Bv aBe bBe a qe re b re qe aq br e ar bq e          . 

 
Looking for the eigenvector of eigenvalue q r+ :  



( )Bv q r v   implies 1 2 1 2( ) ( ) ( ) ( )aq br e ar bq e q r ae q r be       .  Since e1 and e2 are 

linearly independent, equality can only hold if coefficients of e1 match, and coefficients of e2 
match. 
For e1: aq br aq ar   ; For e2: ar bq bq br   .  Both solve for a b= .  So the eigenvectors 

corresponding to the eigenvalue q r+  are multiples of 1 2e e+ , i.e., of 
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For the eigenvectors of eigenvalue  q r- : 
 

( )Bv q r v   implies 1 2 1 2( ) ( ) ( ) ( )aq br e ar bq e q r ae q r be       .  Since e1 and e2 are 

linearly independent, equality can only hold if coefficients of e1 match, and coefficients of e2 
match. 
For e1: aq br aq ar   ; For e2: ar bq bq br   .  Both solve for a b=- .  So the eigenvectors 

corresponding to the eigenvalue q r-  are multiples of 1 2e e- , i.e., of 
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So there are two eigenvalues, q r+  and q r- , each with eigenspace of dimension 1, spanned by 
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Again, first use the determinant to find the eigenvalues.  
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. det( ) 0zI B   solves for z q ir=  , so these 

are the eigenvalues of B.  To find the eigenvectors:  As in part B, say 1
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 and 

v is an eigenvector with 1 2v ae be  .  1 1 2Ce qe re= + .  2 1 2Ce re qe=- + .  So 

1 2 1 2 1 2 1 2( ) ( ) ( ) ( )Cv aCe bCe a qe re b re qe aq br e ar bq e           . 

 
Looking for the eigenvector of eigenvalue q ir+ :  

( )Cv q ir v   implies 1 2 1 2( ) ( ) ( ) ( )aq br e ar bq e q ir ae q ir be       .  Since e1 and e2 are 

linearly independent, equality can only hold if coefficients of e1 match, and coefficients of e2 
match. 
For e1: aq br aq air   ; For e2: ar bq bq bir   .  Both solve for a ib= .  So the 

eigenvectors corresponding to the eigenvalue q ir+  are multiples of 1 2e ie+ , i.e., of 
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Similarly (or, remembering that everything is symmetric with respect to complex conjugation) 

the eigenvector associated with z q ir q ir= - = +  must be 
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Q2: Eigenvectors of some linear operators in a continuous space 
 
V is a vector space of functions of time.  In each case, find the eigenvalues and eigenvectors of 
the indicated operator, and determine whether the operator is time-translation invariant 
 
A. ( ) ( )Lv t tv t= . 
 
If ( )v t  has eigenvalue l , then ( ) ( )Lv t v tl=  means ( ) ( )v t tv tl = , which means that either 

t l=  or ( ) 0v t = .  This is satisfied by 
,
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L is not time-translation invariant:  ( ) ( )( ) ( ) ( )] ( ) ( )T TD Lv t D tv t t T v t T= = + +  but 

( ) ( )( ) ( ) ( ) ( )T TLD t L D v t tv t T= = + . 

 
B. ( ) ( )Rv t v t= - .  
 
If ( )v t  has eigenvalue l , then ( ) ( )Rv t v tl=  means ( ) ( )v t v tl = - , and, that 

2 ( ) ( ) ( )v t v t v tl l= - =  which means that 1l=  or 1l=- .  
 
If 1l= : Any even-symmetric function (satisfying ( ) ( )v t v t= - ) is an eigenvector.  
If 1l=- : Any odd-symmetric function (satisfying ( ) ( )v t v t=- - ) is an eigenvector. 
 
Starting with an arbitrary f, ( )I R f f Rf+ = +  is always an even-symmetric function, since 

2( ) ( ) ( )R I R f R R f R I f+ = + = + . 
 
Similarly, ( )I R f f Rf- = -  is always an odd-symmetric function, since 

2( ) ( ) ( ) ( )R I R f R R f R I f I R f- = - = - =- - . 
 
R is not time-translation invariant:  ( ) ( )( ) ( ) ( )] ( ( )) ( )T TD Rv t D Rv t v t T v t T= = - + = - -  but 

( ) ( )( ) ( ) ( ) ( )T TRD t R D v t v t T= = - + . 

 
Note that R and all the TD ’s form a group, since 2R I=  and T TD R RD-= , vaguely like the 

dihedral group – but here, continuous and open-ended. 
 
 



C. ( ) ( )
d
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If ( )v t  has eigenvalue l , then ( ) ( )Mv t v tl=  means ( ) ( )
dv

v t t
dt

l = , i.e., that v satisfies the 

differential equation 
dv

v
dt

l= .  Solve by separation of variables 

 
dv
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v

l= , which implies (log )d v dtl= , which implies ( ) exp( )v t a tl=  (or by inspection).  

Eigenvectors are thus ( ) exp( )v t a tl= . 

M is time-translation invariant:  ( ) ( )( ) ( ) ( )T T

d
D Mv t v t T MD v t
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= + = . 

 
 
Q3:  Knowing vector lengths determines the inner product. 
 
V is a Hilbert space, and ,v w  is its inner product.  Write ,v w  in terms of the squared vector 

lengths  
2

,av bw av bw av bw+ = + +  for selected values of a and b  Hint: consider 

especially ( , ) {(1,1), (1, 1), (1, ), (1, )}a b i i= - - . 
 
First, 
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So 
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So ( )2 2 2 21
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