Linear Transformations and Group Representations

Homework \#1 (2012-2013)
Q1: Eigenvectors of some linear operators in matrix form (also see Homework from "Algebraic Overview" (2008-2009))

In each case, find the eigenvalues, the eigenvectors, the dimensions of the eigenspaces, and whether a basis can be chosen from the eigenvectors.
A. $A=\left(\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right)$.
B. $B=\left(\begin{array}{ll}q & r \\ r & q\end{array}\right)$ (assume $q>r>0$).
C. $C=\left(\begin{array}{cc}q & r \\ -r & q\end{array}\right)$

Q2: Eigenvectors of some linear operators in a continuous space
V is a vector space of functions of time. In each case, find the eigenvalues and eigenvectors of the indicated operator, and determine whether the operator is time-translation invariant
A. $L v(t)=t v(t)$.
B. $R v(t)=v(-t)$.
C. $M v(t)=\frac{d}{d t} v(t)$.

Q3: Knowing vector lengths determines the inner product.
V is a Hilbert space, and $\langle v, w\rangle$ is its inner product. Write $\langle v, w\rangle$ in terms of the squared vector lengths $\|a v+b w\|^{2}=\langle a v+b w, a v+b w\rangle$ for selected values of a and b Hint: consider especially $(a, b)=\{(1,1),(1,-1),(1, i),(1,-i)\}$.

