Linear Transformations and Group Representations

Homework \#2 (2012-2013)
Q1: Demonstrating that the pseudoinverse construction yields a projection.
The notes stated that one could construct a projection onto the range of an operator B as $P_{B}=B\left(B^{*} B\right)^{-1} B^{*}$, with the fine print that the inverse of $B^{*} B$ is only computed within the range of B. Show that P_{B} is a projection, i.e., show that it is self-adjoint and that $P_{B} P_{B}=P_{B}$.

First, show P_{B} is self-adjoint: $P_{B}^{*}=\left(B\left(B^{*} B\right)^{-1} B^{*}\right)^{*}=\left(B^{*}\right)^{*}\left(\left(B^{*} B\right)^{-1}\right)^{*} B^{*}=B\left(\left(B^{*} B\right)^{-1}\right)^{*} B^{*}$ (second equality: adjoint of a product=product of adjoints in reverse order; third equality: $\left(B^{*}\right)^{*}=B$.

But also, $\left(\left(B^{*} B\right)^{-1}\right)^{*}=\left(\left(B^{*} B\right)^{*}\right)^{-1}=\left(B^{*}\left(B^{*}\right)^{*}\right)^{-1}=\left(B^{*} B\right)^{-1}$ (first equality: adjoint of inverse $=$ inverse of adjoint; second equality: adjoint of product = product of adjoints in reverse order)

So $P_{B}^{*}=B\left(\left(B^{*} B\right)^{-1}\right)^{*} B^{*}=B\left(B^{*} B\right)^{-1} B^{*}=P_{B}$.
Second, show $P_{B} P_{B}=P_{B}$:

$$
\begin{aligned}
& P_{B} P_{B}=\left(B\left(B^{*} B\right)^{-1} B^{*}\right)\left(B\left(B^{*} B\right)^{-1} B^{*}\right) \\
& =B\left(B^{*} B\right)^{-1} B^{*} B\left(B^{*} B\right)^{-1} B^{*} \\
& =B\left(B^{*} B\right)^{-1}\left(B^{*} B\right)\left(B^{*} B\right)^{-1} B^{*} \\
& =B\left(B^{*} B\right)^{-1} B^{*}=P_{B}
\end{aligned}
$$

Q2: Another example of a group representation.
Consider the permutations of a set of $n=3$ abstract elements, $S=\{a, b, c\}$. There are $n!=6$ permutations of these 3 elements, and they form a group, G, under composition. Let V be the 3dimensional vector space V of functions on these elements. We can define a unitary representation of G in $\operatorname{Hom}(V, V)$ as follows: The unitary transformation U_{σ} corresponding to the permutation σ is the transformation that takes the function f to $U_{\sigma}(f)$, where $\left(U_{\sigma} f\right)(x)=f\left(\sigma^{-1}(x)\right)$, where $\sigma^{-1}(x)$ denotes the element of S that is moved to x by σ.
A. Verify that this is a representation. That is, show that composition of permutations σ and τ corresponds to composition of the corresponding transformations U_{σ} and $U_{\tau}, U_{\sigma} U_{\tau}=U_{\sigma \tau}$.

$$
\left(U_{\sigma}\left(U_{\tau} f\right)\right)(x)=\left(U_{\tau} f\right)\left(\sigma^{-1} x\right)=f\left(\tau^{-1} \sigma^{-1} x\right)=f\left((\sigma \tau)^{-1} x\right)=\left(U_{\sigma \tau} f\right)(x)
$$

Since this is true for all f and x, it follows that $U_{\sigma} U_{\tau}=U_{\sigma \tau}$.
B. Choose a basis set for V, as follows: $f_{a}(x)=\left\{\begin{array}{l}1, x=a \\ 0, x \neq a\end{array}\right.$, and similarly for f_{b} and f_{c}. So for any $f, f=f(a) f_{a}+f(b) f_{b}+f(c) f_{c}$, i.e. $f=\left(\begin{array}{l}f(a) \\ f(b) \\ f(c)\end{array}\right)$. In this basis, write the matrix form of U_{σ} for $\sigma=(a b)$ (σ is the permutation that takes a to b and b to a) and U_{τ} for $\tau=(a b c)(\tau$ is the permutation that takes a to b, b to c, and c to a).

For $\sigma=(a b)$:
$\left(U_{\sigma} f\right)(a)=f\left(\sigma^{-1} a\right)=f(b)$
$\left(U_{\sigma} f\right)(b)=f\left(\sigma^{-1} b\right)=f(a)$, so $U_{\sigma} f=f(b) f_{a}+f(a) f_{b}+f(c) f_{c}$. So in coordinates,
$\left(U_{\sigma} f\right)(c)=f\left(\sigma^{-1} c\right)=f(c)$
$U_{\sigma} f=\left(\begin{array}{c}f(b) \\ f(a) \\ f(c)\end{array}\right)$. And since $f=\left(\begin{array}{c}f(a) \\ f(b) \\ f(c)\end{array}\right), U_{\sigma} f=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right) f$.
For $\tau=(a b c)$:
$\left(U_{\tau} f\right)(a)=f\left(\tau^{-1} a\right)=f(c)$
$\left(U_{\tau} f\right)(b)=f\left(\tau^{-1} b\right)=f(a)$, so $U_{\tau} f=f(c) f_{a}+f(a) f_{b}+f(b) f_{c}$. So in coordinates,
$\left(U_{\tau} f\right)(c)=f\left(\tau^{-1} c\right)=f(b)$
$U_{\tau} f=\left(\begin{array}{l}f(c) \\ f(a) \\ f(b)\end{array}\right)$. And since $f=\left(\begin{array}{l}f(a) \\ f(b) \\ f(c)\end{array}\right), U_{\tau} f=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right) f$.

