Linear Transformations and Group Representations

Homework #2 (2012-2013)

Q1: Demonstrating that the pseudoinverse construction yields a projection.

The notes stated that one could construct a projection onto the range of an operator B as $P_B = B(B^*B)^{-1}B^*$, with the fine print that the inverse of B^*B is only computed within the range of B. Show that P_B is a projection, i.e., show that it is self-adjoint and that $P_B P_B = P_B$.

First, show P_{B} is self-adjoint:

 $P_B^* = \left(B(B^*B)^{-1}B^*\right)^* = \left(B^*\right)^* \left((B^*B)^{-1}\right)^* B^* = B\left((B^*B)^{-1}\right)^* B^* \text{ (second equality: adjoint of a product=product of adjoints in reverse order; third equality: <math>\left(B^*\right)^* = B$.

But also, $((B^*B)^{-1})^* = ((B^*B)^*)^{-1} = (B^*(B^*)^*)^{-1} = (B^*B)^{-1}$ (first equality: adjoint of inverse = inverse of adjoint; second equality: adjoint of product = product of adjoints in reverse order)

So
$$P_B^* = B((B^*B)^{-1})^* B^* = B(B^*B)^{-1} B^* = P_B$$

Second, show $P_B P_B = P_B$:

$$P_{B}P_{B} = (B(B^{*}B)^{-1}B^{*})(B(B^{*}B)^{-1}B^{*})$$

= $B(B^{*}B)^{-1}B^{*}B(B^{*}B)^{-1}B^{*}$
= $B(B^{*}B)^{-1}(B^{*}B)(B^{*}B)^{-1}B^{*}$
= $B(B^{*}B)^{-1}B^{*} = P_{B}$. (Just associative law and definition of inverses)

Q2: Another example of a group representation.

Consider the permutations of a set of n = 3 abstract elements, $S = \{a, b, c\}$. There are n! = 6 permutations of these 3 elements, and they form a group, G, under composition. Let V be the 3-dimensional vector space V of functions on these elements. We can define a unitary representation of G in Hom(V,V) as follows: The unitary transformation U_{σ} corresponding to the permutation σ is the transformation that takes the function f to $U_{\sigma}(f)$, where $(U_{\sigma}f)(x) = f(\sigma^{-1}(x))$, where $\sigma^{-1}(x)$ denotes the element of S that is moved to x by σ .

A. Verify that this is a representation. That is, show that composition of permutations σ and τ corresponds to composition of the corresponding transformations U_{σ} and U_{τ} , $U_{\sigma}U_{\tau} = U_{\sigma\tau}$.

$$\left(U_{\sigma}\left(U_{\tau}f\right)\right)(x) = \left(U_{\tau}f\right)(\sigma^{-1}x) = f(\tau^{-1}\sigma^{-1}x) = f\left((\sigma\tau)^{-1}x\right) = \left(U_{\sigma\tau}f\right)(x)$$

Since this is true for all f and x, it follows that $U_{\sigma}U_{\tau} = U_{\sigma\tau}$.

B. Choose a basis set for V, as follows:
$$f_a(x) = \begin{cases} 1, x = a \\ 0, x \neq a \end{cases}$$
, and similarly for f_b and f_c . So for any $f, f = f(a)f_a + f(b)f_b + f(c)f_c$, i.e. $f = \begin{cases} f(a) \\ f(b) \\ f(c) \end{cases}$. In this basis, write the matrix form of

 U_{σ} for $\sigma = (ab)$ (σ is the permutation that takes a to b and b to a) and U_{τ} for $\tau = (abc)$ (τ is the permutation that takes a to b, b to c, and c to a).

For
$$\sigma = (ab)$$
:
 $(U_{\sigma}f)(a) = f(\sigma^{-1}a) = f(b)$
 $(U_{\sigma}f)(b) = f(\sigma^{-1}b) = f(a)$, so $U_{\sigma}f = f(b)f_{a} + f(a)f_{b} + f(c)f_{c}$. So in coordinates,
 $(U_{\sigma}f)(c) = f(\sigma^{-1}c) = f(c)$
 $U_{\sigma}f = \begin{pmatrix} f(b) \\ f(a) \\ f(c) \end{pmatrix}$. And since $f = \begin{pmatrix} f(a) \\ f(b) \\ f(c) \end{pmatrix}$, $U_{\sigma}f = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} f$.

For
$$\tau = (abc)$$
:
 $(U_{\tau}f)(a) = f(\tau^{-1}a) = f(c)$
 $(U_{\tau}f)(b) = f(\tau^{-1}b) = f(a)$, so $U_{\tau}f = f(c)f_a + f(a)f_b + f(b)f_c$. So in coordinates,
 $(U_{\tau}f)(c) = f(\tau^{-1}c) = f(b)$
 $U_{\tau}f = \begin{pmatrix} f(c) \\ f(a) \\ f(b) \end{pmatrix}$. And since $f = \begin{pmatrix} f(a) \\ f(b) \\ f(c) \end{pmatrix}$, $U_{\tau}f = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} f$.