Linear Transformations and Group Representations

Homework \#2 (2012-2013)
Q1: Demonstrating that the pseudoinverse construction yields a projection.
The notes stated that one could construct a projection onto the range of an operator B as $P_{B}=B\left(B^{*} B\right)^{-1} B^{*}$, with the fine print that the inverse of $B^{*} B$ is only computed within the range of B. Show that P_{B} is a projection, i.e., show that it is self-adjoint and that $P_{B} P_{B}=P_{B}$.

Q2: Another example of a group representation.
Consider the permutations of a set of $n=3$ abstract elements, $S=\{a, b, c\}$. There are $n!=6$ permutations of these 3 elementss, and they form a group, G, under composition. Let V be the 3dimensional vector space V of functions on these elements. We can define a unitary representation of G in $\operatorname{Hom}(V, V)$ as follows: The unitary transformation U_{σ} corresponding to the permutation σ is the transformation that takes the function f to $U_{\sigma}(f)$, where $\left(U_{\sigma} f\right)(x)=f\left(\sigma^{-1}(x)\right)$, where $\sigma^{-1}(x)$ denotes the element of S that is moved to x by σ.
A. Verify that this is a representation. That is, show that composition of permutations σ and τ corresponds to composition of the corresponding transformations U_{σ} and $U_{\tau}, U_{\sigma} U_{\tau}=U_{\sigma \tau}$.
B. Choose a basis set for V, as follows: $f_{a}(x)=\left\{\begin{array}{l}1, x=a \\ 0, x \neq a\end{array}\right.$, and similarly for f_{b} and f_{c}. So for any $f, f=f(a) f_{a}+f(b) f_{b}+f(c) f_{c}$, i.e. $f=\left(\begin{array}{l}f(a) \\ f(b) \\ f(c)\end{array}\right)$. In this basis, write the matrix form of U_{σ} for $\sigma=(a b)$ (σ is the permutation that takes a to b and b to a) and U_{τ} for $\tau=(a b c)$ (τ is the permutation that takes a to b, b to c, and c to a).

