Exam, 2012-2013

Do a total of 12 points or any four complete questions. Show your work!
Q1: 5 parts/5 points, no dependencies
Q2: 3 parts/3 points, no dependencies
Q3: 3 parts/3 points, parts B and C depend on A
Q4: 2 parts/2 points, no dependencies
Q5: 2 parts/2 points, part B depends on A
Q6: 2 parts/2 points, part B depends on A
Q1. Semidirect products (5 parts, 1 point for each part)
Here we define the "semi-direct product," a standard way of building larger groups from smaller ones. Let H and K be groups, with a homomorphism from K into the automorphism group of H. That is, for each element $k \in K$, there is an automorphism α_{k} of H, and $\alpha_{k} \alpha_{k^{\prime}}=\alpha_{k k^{\prime}}$.

With this setup, we can define an operation on (h, k) pairs: $(h, k) \circ\left(h^{\prime}, k^{\prime}\right)=\left(h \alpha_{k}\left(h^{\prime}\right), k k^{\prime}\right)$, where the composition $h \alpha_{k}\left(h^{\prime}\right)$ takes place in H, and the composition $k k^{\prime}$ takes place in K.
A. Show that this operation forms a group, known as the "semidirect product of H and K ".
B. Recall the definition of a normal subgroup: A subgroup N of G is said to be a "normal" subgroup if, for any element g of G and any element n of N, the combination $g n g^{-1}$ is also a member of N.
Determine whether the set of elements $S_{K}=\left\{\left(e_{H}, k\right)\right\}$ is a normal subgroup.
C. Determine whether the set of elements $S_{H}=\left\{\left(h, e_{K}\right)\right\}$ is a normal subgroup.
D. Use the above construction to create a continuous non-commutative group, where H and K are both commutative.
E. Use the above construction to create a discrete non-commutative group that is of size 21.

Q2. Operator exponentials (3 parts, 1 point for each part)
Setup: A is a Hermitian operator; s and t are complex numbers. Define $e^{A s}=\sum_{k=0}^{\infty} \frac{1}{k!} s^{k} A^{k}$, where A^{k} indicates (ordinary) repetitive application of the operator A (and $A^{0}=I$).
A. Is $e^{A(s+t)}=e^{A s} e^{A t}$? Why or why not?
B. Is $e^{(A+B) s}=e^{A s} e^{B s}$? Why or why not?
C. What is $\operatorname{det}\left(e^{A}\right)$ in terms of the coefficients of the characteristic equation for A ?

Q3. Transfer functions and power spectra (3 parts, 1 point for each part)

The boxes are linear filters, with transfer functions $\tilde{F}_{i}(\omega)$ and $\tilde{H}_{i}(\omega)$.
A. Determine the relationships between the Fourier transforms of the inputs $\tilde{s}_{i}(\omega)$ and the outputs $\tilde{r}_{i}(\omega)$.
B. Suppose that $s_{1}(t)$ and $s_{2}(t)$ are Gaussian noises, whose power spectra are $P_{1}(\omega)$ and $P_{2}(\omega)$. Assuming they are independent, calculate the power spectra of $r_{1}(t)$ and $r_{2}(t)$, and the cross-spectrum of $r_{1}(t)$ and $r_{2}(t)$.
C. As in B, but now assume that $s_{1}(t)$ and $s_{2}(t)$ have a nonzero cross-spectrum $X(\omega)$.

Q4. Graph Laplacians of composite graphs (2 parts, 1 point for each part)
A. Say G is a connected graph of size n_{G} whose graph Laplacian L_{G} has eigenvectors φ_{i} with eigenvalues λ_{i}, and H is a connected graph of size n_{H} whose graph Laplacian L_{H} has eigenvectors ψ_{i} with eigenvalues μ_{i}. For definiteness, take φ_{1} to be the uniform eigenvector, i.e., the eigenvector composed of all 1's, for which $L_{G} \varphi_{1}=0$, and, similarly, for ψ_{1}.

Consider the graph K of size $n_{G}+n_{H}$ consisting of all the vertices and edges in G and H, along with an edge from every vertex in G to every vertex in H. Find the eigenvectors and eigenvalues of the graph Laplacian of K.

B. Say G is a connected graph of size n_{G} whose graph Laplacian L_{G} has eigenvectors φ_{i} with eigenvalues λ_{i}, and H is a connected graph of size n_{H} whose graph Laplacian L_{H} has eigenvectors ψ_{i} with eigenvalues μ_{i}. For definiteness, take φ_{1} to be the uniform eigenvector, i.e., the eigenvector composed of all 1's, for which $L_{G} \varphi_{1}=0$, and, similarly, for ψ_{1}.

Consider the graph B of size $n_{G}+n_{H}+1$ consisting of all the vertices and edges in G and H, along with a new vertex P. There are edges from every vertex in G to P, and from every vertex in H to P. (If P is positioned between G and H, B is a "bowtie").

Find the eigenvectors and eigenvalues of the graph Laplacian of B.

Q5. Graph Laplacians of bilaterally symmetric graphs (2 parts, 1 point for each part)
Say G is a connected graph of size n_{G} whose graph Laplacian L_{G} has eigenvectors φ_{i} with eigenvalues λ_{i}. For definiteness, take φ_{1} to be the uniform eigenvector, i.e., the eigenvector composed of all 1 's, for which $L_{G} \varphi_{1}=0$.

Now form a graph Y that consists of two copies of G, and, between these two copies, the corresponding nodes are connected. (Think of G as being the graph that represents connections within a hemisphere, and Y as being the graph that represents the two hemispheres, with their internal connections and callosal connections between the corresponding areas.)

There's an obvious two-element group $R=\{e, r\}$ that leaves Y invariant: the non-identity element of R interchanges the two components of Y.

A. What does the action of R on Y imply about the eigenvectors of the graph Laplacian L_{Y} ?
B. Determine the eigenvectors and eigenvalues of the graph Laplacian L_{Y}.

Q6: Community structure (2 parts, 1 point for each part)
Recall that the community structure of a graph consists of an assignment of each vertex i to a community c_{i} that maximizes the "quality function"
$Q=\sum_{i, j}\left(a_{i j}-p_{i j}\right) \delta\left(c_{i}, c_{j}\right)$,
where the sum is over all distinct pairs of vertices $\{i, j\}, p_{i j}=\frac{d_{i} d_{j}}{2 m}$, where m is the total number of edges, and d_{i} is the degree of the vertex i.
A. For a cyclic graph G of size $n \geq 3$, find the community structure.
B. For a linear graph G of size $n \geq 3$, find the community structure.

