Exam, 2012-2013

Do a total of 12 points or any four complete questions. Show your work!

Q1: 5 parts/5 points, no dependencies
Q2: 3 parts/3 points, no dependencies
Q3: 3 parts/3 points, parts B and C depend on A
Q4: 2 parts/2 points, no dependencies
Q5: 2 parts/2 points, part B depends on A
Q6: 2 parts/2 points, part B depends on A

Q1. Semidirect products (5 parts, 1 point for each part)

Here we define the “semi-direct product,” a standard way of building larger groups from smaller ones. Let \(H \) and \(K \) be groups, with a homomorphism from \(K \) into the automorphism group of \(H \). That is, for each element \(k \in K \), there is an automorphism \(\alpha_k \) of \(H \), and \(\alpha_k \alpha_k' = \alpha_{kk'} \).

With this setup, we can define an operation on \((h,k)\) pairs: \((h,k) \circ (h',k') = (h\alpha_k(h'), kk')\), where the composition \(h\alpha_k(h') \) takes place in \(H \), and the composition \(kk' \) takes place in \(K \).

A. Show that this operation forms a group, known as the “semidirect product of \(H \) and \(K \)”.

B. Recall the definition of a normal subgroup: A subgroup \(N \) of \(G \) is said to be a “normal” subgroup if, for any element \(g \) of \(G \) and any element \(n \) of \(N \), the combination \(gng^{-1} \) is also a member of \(N \). Determine whether the set of elements \(S_K = \{(e_H,k)\} \) is a normal subgroup.

C. Determine whether the set of elements \(S_H = \{(h,e_k)\} \) is a normal subgroup.

D. Use the above construction to create a continuous non-commutative group, where \(H \) and \(K \) are both commutative.

E. Use the above construction to create a discrete non-commutative group that is of size 21.
Q2. Operator exponentials (3 parts, 1 point for each part)

Setup: A is a Hermitian operator; s and t are complex numbers. Define $e^{As} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$, where A^k indicates (ordinary) repetitive application of the operator A (and $A^0 = I$).

A. Is $e^{A(s+t)} = e^{As} e^{At}$? Why or why not?
B. Is $e^{(A+B)s} = e^{As} e^{Bs}$? Why or why not?
C. What is $\det(e^A)$ in terms of the coefficients of the characteristic equation for A?
Q3. Transfer functions and power spectra (3 parts, 1 point for each part)

The boxes are linear filters, with transfer functions $\tilde{F}_i(\omega)$ and $\tilde{H}_i(\omega)$.

A. Determine the relationships between the Fourier transforms of the inputs $\tilde{s}_i(\omega)$ and the outputs $\tilde{r}_i(\omega)$.

B. Suppose that $s_1(t)$ and $s_2(t)$ are Gaussian noises, whose power spectra are $P_1(\omega)$ and $P_2(\omega)$.
Assuming they are independent, calculate the power spectra of $r_1(t)$ and $r_2(t)$, and the cross-spectrum of $r_1(t)$ and $r_2(t)$.

C. As in B, but now assume that $s_1(t)$ and $s_2(t)$ have a nonzero cross-spectrum $X(\omega)$.
Q4. Graph Laplacians of composite graphs (2 parts, 1 point for each part)

A. Say \(G \) is a connected graph of size \(n_G \) whose graph Laplacian \(L_G \) has eigenvectors \(\varphi_i \) with eigenvalues \(\lambda_i \), and \(H \) is a connected graph of size \(n_H \) whose graph Laplacian \(L_H \) has eigenvectors \(\psi_i \) with eigenvalues \(\mu_i \). For definiteness, take \(\varphi_1 \) to be the uniform eigenvector, i.e., the eigenvector composed of all 1’s, for which \(L_G \varphi_1 = 0 \), and, similarly, for \(\psi_1 \).

Consider the graph \(K \) of size \(n_G + n_H \) consisting of all the vertices and edges in \(G \) and \(H \), along with an edge from every vertex in \(G \) to every vertex in \(H \). Find the eigenvectors and eigenvalues of the graph Laplacian of \(K \).

![Graph K](image)

B. Say \(G \) is a connected graph of size \(n_G \) whose graph Laplacian \(L_G \) has eigenvectors \(\varphi_i \) with eigenvalues \(\lambda_i \), and \(H \) is a connected graph of size \(n_H \) whose graph Laplacian \(L_H \) has eigenvectors \(\psi_i \) with eigenvalues \(\mu_i \). For definiteness, take \(\varphi_1 \) to be the uniform eigenvector, i.e., the eigenvector composed of all 1’s, for which \(L_G \varphi_1 = 0 \), and, similarly, for \(\psi_1 \).

Consider the graph \(B \) of size \(n_G + n_H + 1 \) consisting of all the vertices and edges in \(G \) and \(H \), along with a new vertex \(P \). There are edges from every vertex in \(G \) to \(P \), and from every vertex in \(H \) to \(P \). (If \(P \) is positioned between \(G \) and \(H \), \(B \) is a “bowtie”).

Find the eigenvectors and eigenvalues of the graph Laplacian of \(B \).

![Graph B](image)
Q5. Graph Laplacians of bilaterally symmetric graphs (2 parts, 1 point for each part)

Say G is a connected graph of size n_G whose graph Laplacian L_G has eigenvectors φ_i with eigenvalues λ_i. For definiteness, take φ_1 to be the uniform eigenvector, i.e., the eigenvector composed of all 1’s, for which $L_G\varphi_1 = 0$.

Now form a graph Y that consists of two copies of G, and, between these two copies, the corresponding nodes are connected. (Think of G as being the graph that represents connections within a hemisphere, and Y as being the graph that represents the two hemispheres, with their internal connections and callosal connections between the corresponding areas.)

There’s an obvious two-element group $R = \{e, r\}$ that leaves Y invariant: the non-identity element of R interchanges the two components of Y.

A. What does the action of R on Y imply about the eigenvectors of the graph Laplacian L_Y?

B. Determine the eigenvectors and eigenvalues of the graph Laplacian L_Y.
Q6: Community structure (2 parts, 1 point for each part)

Recall that the community structure of a graph consists of an assignment of each vertex i to a community c_i that maximizes the “quality function”

$$Q = \sum_{i,j} (a_{ij} - p_{ij}) \delta(c_i, c_j),$$

where the sum is over all distinct pairs of vertices $\{i, j\}$, $p_{ij} = \frac{d_i d_j}{2m}$, where m is the total number of edges, and d_i is the degree of the vertex i.

A. For a cyclic graph G of size $n \geq 3$, find the community structure.
B. For a linear graph G of size $n \geq 3$, find the community structure.