
Groups, Fields, and Vector Spaces 
 
Homework #1 (2014-2015), Answers 
 
Q1: Group or not a group? 
 
Which of the following are groups?  If a group, is it commutative? Finite or infinite?  If 
infinite, is it discrete or continuous? If not a group, where does it fail? 
 
A.  The even integers {... 6, 4, 2,0,2,4,6...}- - - , under multiplication 
Not a group.  It fails to be a group because it doesn’t contain the identity element 
 
B.  The set of all translations of 3-space, under composition 
It’s a commutative group; infinite; continuous 
 
C.  The set of all rotations of 3-space, under composition 
It’s a  non-commutative group; infinite; continuous 
 
D.  The set of all N N´  matrices with integer entries, under matrix addition 
It’s a commutative group, infinite, discrete 
 
E.  The set of all N N´  matrices with integer entries, under matrix multiplication 
Not a group.  Some elements, for example, the matrix with all 0 entries, don’t have 
inverses. 
 
F.  The set of all 2 2´  matrices with integer entries and determinant 1, under matrix 
multiplication 
It’s a non-commutative group, infinite, discrete. 
 
Q2. Modular arithmetic 
 
For two integers x and y, we say x y=  (mod k) if x and y differ by an integer multiple of 
k.  So, for example, 3+4=2 (mod 5) and 6*9=10 (mod 11).  
 
A. Show that the integers {0,1, 1}k-  form a group under addition (mod k).  
Addition (mod k) inherits associativity and the identity element (0) from ordinary 
multiplication.  To show that there’s an additive inverse for an integer x, we note that  

( )x k x k+ - = , so ( ) 0x k x+ - =  (mod k) , so k x-  is the additive inverse of x. 
 
B. For what integers k do the integers {1, 1}k-  form a group under multiplication 
(mod k)? 
It is a group if, and only if, k is prime. 
 
Multiplication (mod k) inherits associativity and the identity element (1) from ordinary 
multiplication.  To determine whether there’s a multiplicative inverse for an integer x, we 



seek another integer y for which 1xy =  (mod k).  This means that 1xy ka= +  for some 
integer a, or, that 1xy ka- = . But if x and k have a common factor greater than 1, say r, 
then xy ka-  also has r as a common factor, so 1xy =  (mod k) cannot be solved, and x 
does not have an inverse.  This means that if k is not a prime, then {1, , 1}k-  is not a 
group under multiplication (mod k). 
 
Conversely, we can show that if k is a prime, then {1, , 1}k-  is a group.   One way to 

see this is as follows. Consider (for 1 1x k£ £ - ) all powers of x, 1 2, , , ,qx x x  , and 
reduce each of them (mod k) to numbers k< .  Since there are only a finite number of 
possibilities in 1 1x k£ £ - , eventually there have to be repeats. If this repeat occurs for 

the integer exponents a and b ( a b< ), then a bx x=  (mod k).  This in turn means that 
a bx x Nk= +  for some integer N.  Since k is prime, x cannot divide k, and therefore ax  

must divide N. So 1 b ax N k- ¢= +  for some integer N ¢  , i.e., 1b ax - =  (mod k).  This in 
turn means that 1b ax - -  is the multiplicative inverse of x. 
 
 
Q3. Normal subgroups 
 
Definition: A subgroup H of G is said to be a “normal” subgroup if, for any element g of 
G and any element h of H, the combination 1ghg-  is also a member of H. 
 
A. Show that if j  is a homomorphism from G to some other group R, then the kernel of 
j  is a normal subgroup of G. (In class, we showed that the kernel must be a subgroup, 
here, show that it is normal as well.) 
 
The kernel of  j  is the set of all group elements h for which ( ) Rh ej = .  To show that the 

kernel is a normal subgroup, we need to show that if ( ) Rh ej = , then 1( ) Rghg ej - = , 

because the latter will mean that 1ghg-  is in the kernel.  
 

1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )R Rghg g h g g e g g g gg e ej j j j j j j j j j- - - - -= = = = = = , 

with the justification for the steps being: j  preserves structure; h is in the kernel; eR is 
the identity in R, j  preserves structure; definition of inverses; j  preserves structure. 
 
B. Show that if H is a normal subgroup and b is any element of G, then the right coset Hb 
is equal to the left coset, bH.  
 
Say hb is a member of the right coset Hb.  We want to show that it is equal to a quantity 
of the form bh¢  for some h¢  in H. To ensure that bh hb¢ = , we can choose  

1h b hb-¢ = .  Since H is assumed to be normal, 1b hb-  is in H, as required. 
 



C.  Show that if H is a normal subgroup, then any element of the right coset Hb , 
composed with any element of the right coset Hc, is a member of the right coset Hbc,  
with the product bc carried out according to the group operation in G.  
 
Similar to B. We multiply a typical member of Hb by a typical member of Hc, and show 
it is in Hbc: 

1( )( )hb h c hbh c hbh b bc h bc-¢ ¢ ¢ ¢¢= = = , for 1h hbh b-¢¢ ¢= .  Note that h¢¢  is guaranteed to 

be in H, since it is a product of two terms that are each in H: 1( )h h bh b-¢¢ ¢= . 
 
D. Consider the mapping from group elements to cosets, ( )b Hbj =  (where H is a 
normal subgroup).  Show that this constitutes a homomorphism from the group G to the 
set of cosets, with the group operation on cosets defined by ( ) ( )Hb Hc Hbc= . 
 
First, we need to show that j  preserves structure.  Using part C, 

( ) ( ) ( )b c HbHc Hbc bcj j j= = = .  Then, we need to find the identity element in the set 
of cosets.  This is H He= , as can be seen from the fact that j  preserves structure.  

Then, we need to find the inverse of a coset Hb .  This is 1Hb- , also from the fact that j  
preserves structure.   
 
E. Find the kernel of the homomorphism in D.  
 
The kernel of j  is the set of elements of G that map onto the identity coset, H He= .  If 

b is in this set, i.e., if Hb He= , then hb h e¢=  for some h and h¢ , so 1b h h- ¢= .  So 
every element of the kernel is in H.  The converse is equally easy; if h is in H, then the 
coset Hh is necessarily H itself. 
 
Comment:  The relationship between kernels, homomorphisms, and normal subgroups 
indicates how groups can be decomposed, and is a prototype for analogous statements 
about decomposing other algebraic structures. 
 


