Groups, Fields, and Vector Spaces
Homework \#1 (2014-2015), Answers
Q1: Group or not a group?
Which of the following are groups? If a group, is it commutative? Finite or infinite? If infinite, is it discrete or continuous? If not a group, where does it fail?
A. The even integers $\{\ldots-6,-4,-2,0,2,4,6 \ldots\}$, under multiplication

Not a group. It fails to be a group because it doesn't contain the identity element
B. The set of all translations of 3-space, under composition

It's a commutative group; infinite; continuous
C. The set of all rotations of 3-space, under composition

It's a non-commutative group; infinite; continuous
D. The set of all $N \times N$ matrices with integer entries, under matrix addition

It's a commutative group, infinite, discrete
E. The set of all $N \times N$ matrices with integer entries, under matrix multiplication Not a group. Some elements, for example, the matrix with all 0 entries, don't have inverses.
F. The set of all 2×2 matrices with integer entries and determinant 1 , under matrix multiplication
It's a non-commutative group, infinite, discrete.
Q2. Modular arithmetic
For two integers x and y, we say $x=y(\bmod k)$ if x and y differ by an integer multiple of k. So, for example, $3+4=2(\bmod 5)$ and $6 * 9=10(\bmod 11)$.
A. Show that the integers $\{0,1, \ldots k-1\}$ form a group under addition (mod k).

Addition ($\bmod k$) inherits associativity and the identity element (0) from ordinary multiplication. To show that there's an additive inverse for an integer x, we note that $x+(k-x)=k$, so $x+(k-x)=0(\bmod k)$, so $k-x$ is the additive inverse of x.
B. For what integers k do the integers $\{1, \ldots k-1\}$ form a group under multiplication $(\bmod k)$?
It is a group if, and only if, k is prime.
Multiplication (mod k) inherits associativity and the identity element (1) from ordinary multiplication. To determine whether there's a multiplicative inverse for an integer x, we
seek another integer y for which $x y=1(\bmod k)$. This means that $x y=1+k a$ for some integer a, or, that $x y-k a=1$. But if x and k have a common factor greater than 1 , say r, then $x y-k a$ also has r as a common factor, so $x y=1(\bmod k)$ cannot be solved, and x does not have an inverse. This means that if k is not a prime, then $\{1, \ldots, k-1\}$ is not a group under multiplication (mod k).

Conversely, we can show that if k is a prime, then $\{1, \ldots, k-1\}$ is a group. One way to see this is as follows. Consider (for $1 \leq x \leq k-1$) all powers of $x, x^{1}, x^{2}, \ldots, x^{q}, \ldots$, and reduce each of them $(\bmod k)$ to numbers $<k$. Since there are only a finite number of possibilities in $1 \leq x \leq k-1$, eventually there have to be repeats. If this repeat occurs for the integer exponents a and $b(a<b)$, then $x^{a}=x^{b}(\bmod k)$. This in turn means that $x^{a}=x^{b}+N k$ for some integer N. Since k is prime, x cannot divide k, and therefore x^{a} must divide N. So $1=x^{b-a}+N^{\prime} k$ for some integer N^{\prime}, i.e., $x^{b-a}=1(\bmod k)$. This in turn means that x^{b-a-1} is the multiplicative inverse of x.

Q3. Normal subgroups

Definition: A subgroup H of G is said to be a "normal" subgroup if, for any element g of G and any element h of H, the combination ghg^{-1} is also a member of H.
A. Show that if φ is a homomorphism from G to some other group R, then the kernel of φ is a normal subgroup of G. (In class, we showed that the kernel must be a subgroup, here, show that it is normal as well.)

The kernel of φ is the set of all group elements h for which $\varphi(h)=e_{R}$. To show that the kernel is a normal subgroup, we need to show that if $\varphi(h)=e_{R}$, then $\varphi\left(g h g^{-1}\right)=e_{R}$, because the latter will mean that ghg^{-1} is in the kernel.
$\varphi\left(g h g^{-1}\right)=\varphi(g) \varphi(h) \varphi\left(g^{-1}\right)=\varphi(g) e_{R} \varphi\left(g^{-1}\right)=\varphi(g) \varphi\left(g^{-1}\right)=\varphi\left(g g^{-1}\right)=\varphi(e)=e_{R}$, with the justification for the steps being: φ preserves structure; h is in the kernel; e_{R} is the identity in R, φ preserves structure; definition of inverses; φ preserves structure.
B. Show that if H is a normal subgroup and b is any element of G, then the right coset Hb is equal to the left coset, $b H$.

Say $h b$ is a member of the right coset $H b$. We want to show that it is equal to a quantity of the form $b h^{\prime}$ for some h^{\prime} in H. To ensure that $b h^{\prime}=h b$, we can choose $h^{\prime}=b^{-1} h b$. Since H is assumed to be normal, $b^{-1} h b$ is in H, as required.
C. Show that if H is a normal subgroup, then any element of the right coset Hb , composed with any element of the right coset Hc , is a member of the right coset Hbc, with the product bc carried out according to the group operation in G.

Similar to B. We multiply a typical member of $H b$ by a typical member of $H c$, and show it is in $H b c$:
$(h b)\left(h^{\prime} c\right)=h b h^{\prime} c=h b h^{\prime} b^{-1} b c=h^{\prime \prime} b c$, for $h^{\prime \prime}=h b h^{\prime} b^{-1}$. Note that $h^{\prime \prime}$ is guaranteed to be in H, since it is a product of two terms that are each in $H: h^{\prime \prime}=h\left(b h^{\prime} b^{-1}\right)$.
D. Consider the mapping from group elements to cosets, $\varphi(b)=H b$ (where H is a normal subgroup). Show that this constitutes a homomorphism from the group G to the set of cosets, with the group operation on cosets defined by $(H b) \circ(H c)=H b c$.

First, we need to show that φ preserves structure. Using part C, $\varphi(b) \varphi(c)=H b H c=H b c=\varphi(b c)$. Then, we need to find the identity element in the set of cosets. This is $H=H e$, as can be seen from the fact that φ preserves structure. Then, we need to find the inverse of a coset Hb . This is Hb^{-1}, also from the fact that φ preserves structure.

E. Find the kernel of the homomorphism in D.

The kernel of φ is the set of elements of G that map onto the identity coset, $H=H e$. If b is in this set, i.e., if $H b=H e$, then $h b=h^{\prime} e$ for some h and h^{\prime}, so $b=h^{-1} h^{\prime}$. So every element of the kernel is in H. The converse is equally easy; if h is in H, then the coset $H h$ is necessarily H itself.

Comment: The relationship between kernels, homomorphisms, and normal subgroups indicates how groups can be decomposed, and is a prototype for analogous statements about decomposing other algebraic structures.

