Groups, Fields, and Vector Spaces
Homework \#1 (2014-2015)
Q1: Group or not a group?
Which of the following are groups? If a group, is it commutative? Finite or infinite? If infinite, is it discrete or continuous? If not a group, where does it fail?
A. The even integers $\{\ldots-6,-4,-2,0,2,4,6 \ldots\}$, under multiplication
B. The set of all translations of 3-space, under composition
C. The set of all rotations of 3-space, under composition
D. The set of all $N \times N$ matrices with integer entries, under matrix addition
E. The set of all $N \times N$ matrices with integer entries, under matrix multiplication
F. The set of all 2×2 matrices with integer entries and determinant 1 , under matrix multiplication

Q2. Modular arithmetic
For two integers x and y, we say $x=y(\bmod k)$ if x and y differ by an integer multiple of k. So, for example, $3+4=2(\bmod 5)$ and $6 * 9=10(\bmod 11)$.
A. Show that the integers $\{0,1, \ldots k-1\}$ form a group under addition $(\bmod k)$.
B. For what integers k do the integers $\{1, \ldots k-1\}$ form a group under multiplication (mod k)?

Q3. Normal subgroups
Definition: A subgroup H of G is said to be a "normal" subgroup if, for any element g of G and any element h of H, the combination $g h g^{-1}$ is also a member of H.
A. Show that if φ is a homomorphism from G to some other group R, then the kernel of φ is a normal subgroup of G. (In class, showed that the kernel must be a subgroup, here, show that it is normal as well.)
B. Show that if H is a normal subgroup and b is any element of G, then the right coset $H b$ is equal to the left coset, $b H$.
C. Show that if H is a normal subgroup, then any element of the right coset $H b$, composed with any element of the right coset Hc , is a member of the right coset Hbc , with the product $b c$ carried out according to the group operation in G.
D. Consider the mapping from group elements to cosets, $\varphi(b)=H b$ (where H is a normal subgroup). Show that this constitutes a homomorphism from the group G to the set of cosets, with the group operation on cosets defined by $(H b) \circ(H c)=H b c$.
E. Find the kernel of the homomorphism in D.

