
Groups, Fields, and Vector Spaces 
 
Homework #3 (2014-2015), Answers 
 
Q1: Tensor products: concrete examples 
 

Let V and W be two-dimensional vector spaces, with bases 1 2{ , }v v  and { }1 2,w w .  So { }i jv wÄ  is a 

basis for V WÄ .  Say ix VÎ  has the basis expansion 1 1 2 2x v va a= +  and iy WÎ  has the basis 

expansion 1 1 2 2y w wb b= + .     

 

A. Expand x yÄ  in the basis { }i jv wÄ . 
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B.  Now say V W= , and we are using the same basis for x and y, so that 1 1 2 2x v va a= +  and 

1 1 2 2y v vb b= + .  Expand x yÄ  in the basis { }i jv vÄ . 

Taking i iw v=  in part A,  

( ) ( ) ( ) ( )1 1 1 1 2 1 2 1 1 2 1 2 2 2 2 2x y v v v v v v v va b a b a b a bÄ = Ä + Ä + Ä + Ä  

 

C. Expand x y y xÄ + Ä  in the basis { }i jv vÄ . 
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D. Expand x y y xÄ - Ä  in the basis { }i jv vÄ . 
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Q2: Free vector spaces, direct sums and tensor products 
 
Let V be the free vector space on a set S, namely, the set of all functions v on S, with addition  defined 
pointwise, 1 2 1 2( )( ) ( ) ( )v v s v s v s+ = + , and scalar multiplication defined by ( )( ) ( ( ))v s v sa a= ⋅ .  

Similarly, let W be the free vector space on a set T, namely, the set of all functions w on T, with addition  
and multiplication defined in an analogous fashion.  
 
A. Show that the direct-sum vector space V WÅ  is the same as (i.e., “canonically isomorphic” to) the 
free vector space on S TÈ , the union of the sets S and T .  That is, construct an isomorphism between 
the two spaces, without resorting to choosing a basis. 
 
This is mostly an exercise in keeping straight what operates on what. 
 
Elements in V WÅ , by definition, consist of pairs of elements in V and W, added element-by-element, 
while elements in the free vector space on S TÈ  consist of all functions on S TÈ .    We construct a 
homomorphism F  from V WÅ  to the free vector space on S TÈ , and a homomorphism Q  from the 
free vector space on S TÈ  back to V WÅ , and show that they are inverses. 
 
Say ( , )z v w=  is in V WÅ .  To find its corresponding element in the free vector space on S TÈ , we 

need to re-interpret it as a function ( )zF  in S TÈ , that is, assign a value to ( )( ) ( )z uF  for every u in 

S TÈ .  The natural choice is 
 

( )
( )

( ) ( )
( )

v u if u S
z u

w u if u T

ì ÎïïF =íï Îïî
.  We’ll skip some of the details of showing that F  preserves vector-space 

structure, but, for example, here are the details for showing 1 2 1 2( ) ( ) ( )z z z zF + =F +F : 

( , )i i iz v w= , then  1 2 1 2 1 2( , )z z v v w w+ = + +  and 

( ) 1 2
1 2

1 2

( ) ( )
( ) ( )

( ) ( )

v u v u if u S
z z u

w u w u if u T

ì + ÎïïF + =íï + Îïî
, while ( )

( )
( ) ( )

( )
i

i
i

v u if u S
z u

w u if u T

ì ÎïïF =íï Îïî
, so 

( ) ( ) ( )1 2 1 2( ) ( ) ( ) ( ) ( ) ( )z z u z u z uF + = F + F  for all u, and hence 1 2 1 2( ) ( ) ( )z z z zF + =F +F . 

 
 
Conversely, say x is an element of the free vector space on S TÈ .  We need to find a ( )xQ  that maps x 
into an ordered pair of elements ( , )v w  with v in the free vector space on S, and w in the free vector 
space on T,  So we take ( ) ( , )x v wQ =  where ( ) ( )v s x s=   and similarly ( ) ( )w t x t= , noting that for 

( )x u   is defined for all u S TÎ È , so it is defined both on S and T. 
 



To show that Q  is a homomorphism, we need to show 1 2 1 2( ) ( ) ( )x x x xQ + =Q +Q  and 

1 1( ) ( )x xl lQ = Q .  We show the first in detail.  1 2( )x xQ +  is an ordered pair ( , )v w , where v is defined 

by 1 2 1 2( ) ( )( ) ( )( ) ( )( )v s x x s x s x s=Q + =Q +Q , and 1 2 1 2( ) ( )( ) ( )( ) ( )( )w t x x t x t x t=Q + =Q +Q . 

On the other hand, each ( )ixQ  is an ordered pair ( , )i iv w  with ( ) ( )( )i iv s x s=Q  and ( ) ( )( )i iw t x t=Q .  So 

1 2( ) ( ) ( )v s v s v s= +  for all s SÎ  and  1 2( ) ( ) ( )w t w t w t= +  for all t TÎ .  So 1 1 2 2( , ) ( , ) ( , )v w v w v w= + , 

and  1 2 1 1 2 2 1 2( ) ( , ) ( , ) ( , ) ( ) ( )x x v w v w v w x xQ + = = + =Q +Q . 

 
Finally, we need to show that the above two constructions are inverses of each other, namely, that 
( )( )z zQ F =  for ( , )z v w=  in V WÅ , and that ( )( )x xF Q =  for x in free vector space on S TÈ . 

 
Consider first ( )( )zQ F .  According to the definition of Q , this is the element ( , )v w  of V WÅ  for 

which ( )( ) ( ) ( )v s z s= F  for s SÎ  and and ( )( ) ( ) ( )w t z t= F  for t TÎ .  But ( )( ) ( ) ( )z s v sF =  and 

( )( ) ( ) ( )z t w tF = , according to the definition of F .  So ( )( )z zQ F = .  The other way around is equally 

(un)illuminating. 
 
B. As free vector spaces, recall that V  has the “delta-function” basis consisting of the vectors sd ¢  

defined by ( ) 1s sd ¢ =  for s s¢= , and 0 otherwise, and W has the analogous delta-function basis 

consisting of the vectors td ¢  defined by ( ) 1t td ¢ =  for t t ¢= , and 0 otherwise. Display the delta-function 

basis for V WÅ . 
 
These are the delta-functions on S TÈ , namely ( )u ud ¢  defined by ( ) 1u ud ¢ =  for u u¢ =  and 0 otherwise.  

Equivalently, they are extensions of  sd ¢   and td ¢  to S TÈ , giving them a value of 0 beyond the set on 

which they were originally defined. 
 
 
C. (optional) Show that the tensor-product vector space V WÄ  is the same as (i.e., “canonically 
isomorphic” to) the free vector space on S T´ , i.e., the set of all ordered pairs ( , )s t  of elements s SÎ  
and t TÎ .   That is, construct an isomorphism between the two spaces, without resorting to choosing a 
basis. 
 
As in A, we construct a homomorphism F  from V WÄ  to the free vector space on S T´ , a 
homomorphism Q  from the free vector space on S T´  back to V WÄ , and show that they are inverses. 
 
First, we construct the mapping F  for the elementary tensor products v wÄ , i.e., we construct 

( )v wF Ä , and show that it obeys the tensor-product rules.  So we have to specify the value of v wÄ  on 

a typical element ( , )s t  in S T´ .  We define ( )( ) ( , ) ( ) ( )v w s t v s w tF Ä = , where the multiplication on the 

right is in the base field.  We have to show consistency with the tensor-product rules, namely, that  
( ) ( )v w v wl lF Ä =F Ä  and 1 2 1 2(( ) ) ( ) ( )v v w v w v wF + Ä =F Ä +F Ä .  We do this by evaluating both 



sides on elements ( , )s t S TÎ ´ .  For the first, 

( )( ) ( )( ) ( )( )( )( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , )v w s t v s w t v s w t v s w t v w s tl l l l lF Ä = = = =F Ä . 

For the second, 
( )( ) ( )( )

( )( ) ( )( )
1 2 1 2 1 2

1 2 1 2

(( ) )( , ) ( )( ) ( ) ( ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( , ) ( )( , )

v v w s t v v s w t v s v s w t

v s w t v s w t v w s t v w s t

F + Ä = + = +

= + =F Ä +F Ä
, 

where we have used the definition of F  in the first equality, then the definition of addition in the free 
vector space on S, then the distributive law in the base field, and in the final step, the definition of F  
again. 
 
Note that showing consistency with tensor-product rules also shows that F  is a homomorphism. 
 
Next, we construct a homomorphism Q  from the free vector space on S T´  back to V WÄ .  Motivated 
by the way F  is defined, we work on elements in the free vector space on S T´  that are the images of 
elementary tensor products.  These are the “separable” elements of the free vector space on S T´ , 
namely, the functions ( )( , )x s t  for which ( )( , ) ( ) ( )x s t v s w t= .  For these functions, we define 

( )x v wQ = Ä .  But we need to check that this is a self-consistent definition: since  

( )( ) ( ) 1
( , ) ( ) ( ) ( ) ( )x s t v s w t v s w ta

a
æ ö÷ç= = ÷ç ÷çè ø

, we need to be sure that applying Q  to the second factorization 

yields the same result as the first.  The second yields 
1

( )v wa
a
æ ö÷çÄ ÷ç ÷çè ø

, and this is guaranteed equal to 

v wÄ  by the rules for the tensor product in V WÄ : ( ) ( )1 1
( ) ( )v w v w v w v w

a
a a

a a a
æ ö÷çÄ = Ä = Ä = Ä÷ç ÷çè ø

. 

 
Now, we need to extend this definition to the entire free vector space on S T´ , not just the separable 
elements.  We note that the separable elements contain a basis – the delta-function basis, functions 

( , ) ( ) ( )v w v ws t s td d d´ = .  Each element of the entire free vector space on S T´  can be written uniquely as 

( ) ( )
,

( , ) ( , ) ( , )s t
s t

x s t x s t s td ¢ ¢´
¢ ¢

¢ ¢=å , i.e., ( , )x s t¢ ¢  is the coefficient of the basis element s td ¢ ¢´  in the 

expansion of x. So Q  extends to the entire free vector space, by ( )
,

( ) ( , ) s t
s t

x x s t d d¢ ¢
¢ ¢

¢ ¢Q = Äå .   

Finally, note that we didn’t need to introduce the basis to define the homomorphism Q , but we did need 
it to show that it extended to the whole free vector space on S T´ .  So we need to check that this 
extended homomorphism coincides with our original definition ( )x v wQ = Ä  for ( )( , ) ( ) ( )x s t v s w t= . 

This holds because if ( )( , ) ( ) ( )x s t v s w t= , then its coefficients in the basis representation also factor:  

( , ) ( ) ( )x s t v s w t¢ ¢ ¢ ¢= .  So 

 

( ) ( )

( ) ( )

, ,

,

( ) ( , ) ( ) ( )

( ) ( ) ( ) ( )

s t s t
s t s t

s t s t
s t s t

x x s t v s w t

v s w t v s w t v w

d d d d

d d d d

¢ ¢ ¢ ¢
¢ ¢ ¢ ¢

¢ ¢ ¢ ¢
¢ ¢ ¢ ¢

¢ ¢ ¢ ¢Q = Ä = Ä

æ ö æ ö÷ ÷ç ç¢ ¢ ¢ ¢= Ä = Ä = Ä÷ ÷ç ç÷ ÷ç ç÷ ÷è ø è ø

å å

å å å
, 



where we’ve used the rules for the tensor product for the third equality, we separated the sum on the 
fourth equality,and we used the delta-basis representation for v and w for the final equality. 
 
 
To show that ( )( )z zQ F = , we take z v w= Ä  in V WÄ .  , Then ( )zF  is the function on S T´  for 

which ( )( ) ( , ) ( ) ( )z s t v s w tF =  (by the definition of F ).  Since this is separable, ( )( )z v wQ F = Ä  (from 

the definition of Q ), as required. 
 
Similarly, to see that ( )( )x xF Q = , take an x for which ( )( , ) ( ) ( )x s t v s w t= .  Then ( )x v wQ = Ä  (from 

the definition of Q ), and  ( )( )xF Q  is the function on S T´  for which ( )( )( ) ( , ) ( ) ( )x s t v s w tF Q =  (by 

the definition of F ). 
 


