Groups, Fields, and Vector Spaces

Homework #3 (2014-2015), Answers

Q1: Tensor products: concrete examples

Let V and W be two-dimensional vector spaces, with bases $\{v_1, v_2\}$ and $\{w_1, w_2\}$. So $\{v_i \otimes w_j\}$ is a basis for $V \otimes W$. Say $x_i \in V$ has the basis expansion $x = \alpha_1 v_1 + \alpha_2 v_2$ and $y_i \in W$ has the basis expansion $y = \beta_1 w_1 + \beta_2 w_2$.

A. Expand
$$x \otimes y$$
 in the basis $\{v_i \otimes w_j\}$.
 $x \otimes y$
 $= (\alpha_1 v_1 + \alpha_2 v_2) \otimes (\beta_1 w_1 + \beta_2 w_2)$
 $= (\alpha_1 v_1 + \alpha_2 v_2) \otimes (\beta_1 w_1) + (\alpha_1 v_1 + \alpha_2 v_2) \otimes (\beta_2 w_2)$
 $= (\alpha_1 v_1) \otimes (\beta_1 w_1) + (\alpha_2 v_2) \otimes (\beta_1 w_1) + (\alpha_1 v_1) \otimes (\beta_2 w_2) + (\alpha_2 v_2) \otimes (\beta_2 w_2)$
 $= \alpha_1 \beta_1 (v_1 \otimes w_1) + \alpha_2 \beta_1 (v_2 \otimes w_1) + \alpha_1 \beta_2 (v_1 \otimes w_2) + \alpha_2 \beta_2 (v_2 \otimes w_2)$

B. Now say V = W, and we are using the same basis for x and y, so that $x = \alpha_1 v_1 + \alpha_2 v_2$ and $y = \beta_1 v_1 + \beta_2 v_2$. Expand $x \otimes y$ in the basis $\{v_i \otimes v_j\}$. Taking $w_i = v_i$ in part A, $x \otimes y = \alpha_1 \beta_1 (v_1 \otimes v_1) + \alpha_2 \beta_1 (v_2 \otimes v_1) + \alpha_1 \beta_2 (v_1 \otimes v_2) + \alpha_2 \beta_2 (v_2 \otimes v_2)$

C. Expand
$$x \otimes y + y \otimes x$$
 in the basis $\{v_i \otimes v_j\}$.
 $(x \otimes y) + (y \otimes x)$
 $= (\alpha_1 \beta_1 (v_1 \otimes v_1) + \alpha_2 \beta_1 (v_2 \otimes v_1) + \alpha_1 \beta_2 (v_1 \otimes v_2) + \alpha_2 \beta_2 (v_2 \otimes v_2))$
 $+ (\beta_1 \alpha_1 (v_1 \otimes v_1) + \beta_2 \alpha_1 (v_2 \otimes v_1) + \beta_1 \alpha_2 (v_1 \otimes v_2) + \beta_2 \alpha_2 (v_2 \otimes v_2))$
 $= 2\alpha_1 \beta_1 (v_1 \otimes v_1) + (\alpha_2 \beta_1 + \beta_2 \alpha_1) (v_2 \otimes v_1) + (\alpha_1 \beta_2 + \beta_1 \alpha_2) (v_1 \otimes v_2) + 2\alpha_2 \beta_2 (v_2 \otimes v_2)$

D. Expand $x \otimes y - y \otimes x$ in the basis $\{v_i \otimes v_j\}$. $(x \otimes y) - (y \otimes x)$ $= (\alpha_1 \beta_1 (v_1 \otimes v_1) + \alpha_2 \beta_1 (v_2 \otimes v_1) + \alpha_1 \beta_2 (v_1 \otimes v_2) + \alpha_2 \beta_2 (v_2 \otimes v_2))$ $- (\beta_1 \alpha_1 (v_1 \otimes v_1) + \beta_2 \alpha_1 (v_2 \otimes v_1) + \beta_1 \alpha_2 (v_1 \otimes v_2) + \beta_2 \alpha_2 (v_2 \otimes v_2))$ $= (\alpha_2 \beta_1 - \beta_2 \alpha_1) (v_2 \otimes v_1) + (\alpha_1 \beta_2 - \beta_1 \alpha_2) (v_1 \otimes v_2)$ $= (\alpha_2 \beta_1 - \beta_2 \alpha_1) ((v_2 \otimes v_1) - (v_1 \otimes v_2))$

Q2: Free vector spaces, direct sums and tensor products

Let V be the free vector space on a set S, namely, the set of all functions v on S, with addition defined pointwise, $(v_1 + v_2)(s) = v_1(s) + v_2(s)$, and scalar multiplication defined by $(\alpha v)(s) = \alpha \cdot (v(s))$. Similarly, let W be the free vector space on a set T, namely, the set of all functions w on T, with addition and multiplication defined in an analogous fashion.

A. Show that the direct-sum vector space $V \oplus W$ is the same as (i.e., "canonically isomorphic" to) the free vector space on $S \cup T$, the union of the sets S and T. That is, construct an isomorphism between the two spaces, without resorting to choosing a basis.

This is mostly an exercise in keeping straight what operates on what.

Elements in $V \oplus W$, by definition, consist of pairs of elements in *V* and *W*, added element-by-element, while elements in the free vector space on $S \cup T$ consist of all functions on $S \cup T$. We construct a homomorphism Φ from $V \oplus W$ to the free vector space on $S \cup T$, and a homomorphism Θ from the free vector space on $S \cup T$, and a homomorphism Θ from the free vector space on $S \cup T$ back to $V \oplus W$, and show that they are inverses.

Say z = (v, w) is in $V \oplus W$. To find its corresponding element in the free vector space on $S \cup T$, we need to re-interpret it as a function $\Phi(z)$ in $S \cup T$, that is, assign a value to $(\Phi(z))(u)$ for every u in $S \cup T$. The natural choice is

 $(\Phi(z))(u) = \begin{cases} v(u) \text{ if } u \in S \\ w(u) \text{ if } u \in T \end{cases} \text{ We'll skip some of the details of showing that } \Phi \text{ preserves vector-space} \\ \text{structure, but, for example, here are the details for showing } \Phi(z_1 + z_2) = \Phi(z_1) + \Phi(z_2): \\ z_i = (v_i, w_i) \text{, then } z_1 + z_2 = (v_1 + v_2, w_1 + w_2) \text{ and} \\ (\Phi(z_1 + z_2))(u) = \begin{cases} v_1(u) + v_2(u) \text{ if } u \in S \\ w_1(u) + w_2(u) \text{ if } u \in T \end{cases}, \text{ while } (\Phi(z_i))(u) = \begin{cases} v_i(u) \text{ if } u \in S \\ w_i(u) \text{ if } u \in T \end{cases}, \text{ so} \\ (\Phi(z_1 + z_2))(u) = (\Phi(z_1))(u) + (\Phi(z_2))(u) \text{ for all } u \text{, and hence } \Phi(z_1 + z_2) = \Phi(z_1) + \Phi(z_2). \end{cases}$

Conversely, say *x* is an element of the free vector space on $S \cup T$. We need to find a $\Theta(x)$ that maps *x* into an ordered pair of elements (v, w) with *v* in the free vector space on *S*, and *w* in the free vector space on *T*, So we take $\Theta(x) = (v, w)$ where v(s) = x(s) and similarly w(t) = x(t), noting that for x(u) is defined for all $u \in S \cup T$, so it is defined both on *S* and *T*.

To show that Θ is a homomorphism, we need to show $\Theta(x_1 + x_2) = \Theta(x_1) + \Theta(x_2)$ and $\Theta(\lambda x_1) = \lambda \Theta(x_1)$. We show the first in detail. $\Theta(x_1 + x_2)$ is an ordered pair (v, w), where v is defined by $v(s) = \Theta(x_1 + x_2)(s) = \Theta(x_1)(s) + \Theta(x_2)(s)$, and $w(t) = \Theta(x_1 + x_2)(t) = \Theta(x_1)(t) + \Theta(x_2)(t)$. On the other hand, each $\Theta(x_i)$ is an ordered pair (v_i, w_i) with $v_i(s) = \Theta(x_i)(s)$ and $w_i(t) = \Theta(x_i)(t)$. So $v(s) = v_1(s) + v_2(s)$ for all $s \in S$ and $w(t) = w_1(t) + w_2(t)$ for all $t \in T$. So $(v, w) = (v_1, w_1) + (v_2, w_2)$, and $\Theta(x_1 + x_2) = (v, w) = (v_1, w_1) + (v_2, w_2) = \Theta(x_1) + \Theta(x_2)$.

Finally, we need to show that the above two constructions are inverses of each other, namely, that $\Theta(\Phi(z)) = z$ for z = (v, w) in $V \oplus W$, and that $\Phi(\Theta(x)) = x$ for x in free vector space on $S \cup T$.

Consider first $\Theta(\Phi(z))$. According to the definition of Θ , this is the element (v, w) of $V \oplus W$ for which $v(s) = (\Phi(z))(s)$ for $s \in S$ and and $w(t) = (\Phi(z))(t)$ for $t \in T$. But $(\Phi(z))(s) = v(s)$ and $(\Phi(z))(t) = w(t)$, according to the definition of Φ . So $\Theta(\Phi(z)) = z$. The other way around is equally (un)illuminating.

B. As free vector spaces, recall that V has the "delta-function" basis consisting of the vectors $\delta_{s'}$ defined by $\delta_{s'}(s) = 1$ for s = s', and 0 otherwise, and W has the analogous delta-function basis consisting of the vectors $\delta_{t'}$ defined by $\delta_{t'}(t) = 1$ for t = t', and 0 otherwise. Display the delta-function basis for $V \oplus W$.

These are the delta-functions on $S \cup T$, namely $\delta_{u'}(u)$ defined by $\delta_{u'}(u) = 1$ for u' = u and 0 otherwise. Equivalently, they are extensions of $\delta_{s'}$ and $\delta_{t'}$ to $S \cup T$, giving them a value of 0 beyond the set on which they were originally defined.

C. (optional) Show that the tensor-product vector space $V \otimes W$ is the same as (i.e., "canonically isomorphic" to) the free vector space on $S \times T$, i.e., the set of all ordered pairs (s,t) of elements $s \in S$ and $t \in T$. That is, construct an isomorphism between the two spaces, without resorting to choosing a basis.

As in A, we construct a homomorphism Φ from $V \otimes W$ to the free vector space on $S \times T$, a homomorphism Θ from the free vector space on $S \times T$ back to $V \otimes W$, and show that they are inverses.

First, we construct the mapping Φ for the elementary tensor products $v \otimes w$, i.e., we construct $\Phi(v \otimes w)$, and show that it obeys the tensor-product rules. So we have to specify the value of $v \otimes w$ on a typical element (s,t) in $S \times T$. We define $(\Phi(v \otimes w))(s,t) = v(s)w(t)$, where the multiplication on the right is in the base field. We have to show consistency with the tensor-product rules, namely, that $\Phi(\lambda v \otimes w) = \Phi(v \otimes \lambda w)$ and $\Phi((v_1 + v_2) \otimes w) = \Phi(v_1 \otimes w) + \Phi(v_2 \otimes w)$. We do this by evaluating both

sides on elements $(s,t) \in S \times T$. For the first, $\Phi(\lambda v \otimes w)(s,t) = (\lambda v(s))(w(t)) = \lambda(v(s))(w(t)) = (v(s))(\lambda w(t)) = \Phi(v \otimes \lambda w)(s,t).$ For the second, $\Phi((v_1 + v_2) \otimes w)(s,t) = ((v_1 + v_2)(s))(w(t)) = ((v_1(s) + v_2(s))(w(t)))$ $= (v_1(s))(w(t)) + (v_2(s))(w(t)) = \Phi(v_1 \otimes w)(s,t) + \Phi(v_2 \otimes w)(s,t)$

where we have used the definition of Φ in the first equality, then the definition of addition in the free vector space on *S*, then the distributive law in the base field, and in the final step, the definition of Φ again.

Note that showing consistency with tensor-product rules also shows that Φ is a homomorphism.

Next, we construct a homomorphism Θ from the free vector space on $S \times T$ back to $V \otimes W$. Motivated by the way Φ is defined, we work on elements in the free vector space on $S \times T$ that are the images of elementary tensor products. These are the "separable" elements of the free vector space on $S \times T$, namely, the functions x((s,t)) for which x((s,t)) = v(s)w(t). For these functions, we define $\Theta(x) = v \otimes w$. But we need to check that this is a self-consistent definition: since

$$x(s,t) = (v(s))(w(t)) = (\alpha v(s))(\frac{1}{\alpha}w(t))$$
, we need to be sure that applying Θ to the second factorization

yields the same result as the first. The second yields $(\alpha v) \otimes \left(\frac{1}{\alpha}w\right)$, and this is guaranteed equal to

 $v \otimes w$ by the rules for the tensor product in $V \otimes W$: $(\alpha v) \otimes \left(\frac{1}{\alpha}w\right) = \frac{1}{\alpha}((\alpha v) \otimes w) = \frac{\alpha}{\alpha}(v \otimes w) = v \otimes w$.

Now, we need to extend this definition to the entire free vector space on $S \times T$, not just the separable elements. We note that the separable elements contain a basis – the delta-function basis, functions $\delta_{v\times w}(s,t) = \delta_v(s)\delta_w(t)$. Each element of the entire free vector space on $S \times T$ can be written uniquely as $x((s,t)) = \sum_{s',t'} (x(s',t')) \delta_{s'\times t'}(s,t)$, i.e., x(s',t') is the coefficient of the basis element $\delta_{s'\times t'}$ in the expansion of x. So Θ extends to the entire free vector space, by $\Theta(x) = \sum (x(s',t')) \delta_v(s)$.

expansion of *x*. So Θ extends to the entire free vector space, by $\Theta(x) = \sum_{s',t'} (x(s',t')) \delta_{s'} \otimes \delta_{t'}$.

Finally, note that we didn't need to introduce the basis to define the homomorphism Θ , but we did need it to show that it extended to the whole free vector space on $S \times T$. So we need to check that this extended homomorphism coincides with our original definition $\Theta(x) = v \otimes w$ for x((s,t)) = v(s)w(t).

This holds because if x((s,t)) = v(s)w(t), then its coefficients in the basis representation also factor: x(s',t') = v(s')w(t'). So $\Theta(x) = \sum_{s',t'} (x(s',t'))\delta_{s'} \otimes \delta_{t'} = \sum_{s',t'} (v(s')w(t'))\delta_{s'} \otimes \delta_{t'}$ $= \sum_{s',t'} (v(s')\delta_{s'}) \otimes (w(t')\delta_{t'}) = \left(\sum_{s'} v(s')\delta_{s'}\right) \otimes \left(\sum_{t'} w(t')\delta_{t'}\right) = v \otimes w'$ where we've used the rules for the tensor product for the third equality, we separated the sum on the fourth equality, and we used the delta-basis representation for v and w for the final equality.

To show that $\Theta(\Phi(z)) = z$, we take $z = v \otimes w$ in $V \otimes W$., Then $\Phi(z)$ is the function on $S \times T$ for which $\Phi(z)((s,t)) = v(s)w(t)$ (by the definition of Φ). Since this is separable, $\Theta(\Phi(z)) = v \otimes w$ (from the definition of Θ), as required.

Similarly, to see that $\Phi(\Theta(x)) = x$, take an *x* for which x((s,t)) = v(s)w(t). Then $\Theta(x) = v \otimes w$ (from the definition of Θ), and $\Phi(\Theta(x))$ is the function on $S \times T$ for which $\Phi(\Theta(x))((s,t)) = v(s)w(t)$ (by the definition of Φ).