Groups, Fields, and Vector Spaces

Homework \#3 (2014-2015), Questions
Q1: Tensor products: concrete examples
Let V and W be two-dimensional vector spaces, with bases $\left\{v_{1}, v_{2}\right\}$ and $\left\{w_{1}, w_{2}\right\}$. So $\left\{v_{i} \otimes w_{j}\right\}$ is a basis for $V \otimes W$. Say $x_{i} \in V$ has the basis expansion $x=\alpha_{1} v_{1}+\alpha_{2} v_{2}$ and $y_{i} \in W$ has the basis expansion $y=\beta_{1} w_{1}+\beta_{2} w_{2}$.
A. Expand $x \otimes y$ in the basis $\left\{v_{i} \otimes w_{j}\right\}$.
B. Now say $V=W$, and we are using the same basis for x and y, so that $x=\alpha_{1} v_{1}+\alpha_{2} v_{2}$ and $y=\beta_{1} v_{1}+\beta_{2} v_{2}$. Expand $x \otimes y$ in the basis $\left\{v_{i} \otimes v_{j}\right\}$.
C. Expand $x \otimes y+y \otimes x$ in the basis $\left\{v_{i} \otimes v_{j}\right\}$.
D. Expand $x \otimes y-y \otimes x$ in the basis $\left\{v_{i} \otimes v_{j}\right\}$.

Q2: Free vector spaces, direct sums and tensor products
Let V be the free vector space on a set S, namely, the set of all functions v on S, with addition defined pointwise, $\left(v_{1}+v_{2}\right)(s)=v_{1}(s)+v_{2}(s)$, and scalar multiplication defined by $(\alpha v)(s)=\alpha \cdot(v(s))$.
Similarly, let W be the free vector space on a set T, namely, the set of all functions w on T, with addition and multiplication defined in an analogous fashion.
A. Show that the direct-sum vector space $V \oplus W$ is the same as (i.e., "canonically isomorphic" to) the free vector space on $S \cup T$, the union of the sets S and T. That is, construct an isomorphism between the two spaces, without resorting to choosing a basis.
B. As free vector spaces, recall that V has the "delta-function" basis consisting of the vectors $\delta_{s^{\prime}}$ defined by $\delta_{s^{\prime}}(s)=1$ for $s=s^{\prime}$, and 0 otherwise, and W has the analogous delta-function basis consisting of the vectors $\delta_{t^{\prime}}$ defined by $\delta_{t^{\prime}}(t)=1$ for $t=t^{\prime}$, and 0 otherwise. Display the delta-function basis for $V \oplus W$.
C. (optional) Show that the tensor-product vector space $V \otimes W$ is the same as (i.e., "canonically isomorphic" to) the free vector space on $S \times T$, i.e., the set of all ordered pairs (s, t) of elements $s \in S$ and $t \in T$. That is, construct an isomorphism between the two spaces, without resorting to choosing a basis.

