Linear Systems, Black Boxes, and Beyond

Homework #1 (2014-2015), Answers

Q1: Impulse responses and transfer functions

A. Exponential decay: For a system F with an impulse response $f(t) = \begin{cases} \lambda e^{-\lambda t}, & t \ge 0 \\ 0, & t < 0 \end{cases}$, find the transfer function $\hat{f}(\omega)$.

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega t} f(t) dt = \int_{0}^{\infty} e^{-i\omega t} \lambda e^{-\lambda t} dt = \lambda \int_{0}^{\infty} e^{-(i\omega + \lambda)t} dt$$
$$= -\left(\frac{\lambda}{i\omega + \lambda}\right) e^{-(i\omega + \lambda)t} \Big|_{0}^{\infty} = \frac{\lambda}{i\omega + \lambda} = \frac{1}{1 + i\omega / \lambda}$$

B. Pure delay: For a system F_T with an impulse response $f_T(t) = \delta(t-T)$, find the transfer function $\hat{f}_T(\omega)$.

$$\hat{f}_{T}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega t} f_{T}(t) dt = \int_{0}^{\infty} e^{-i\omega t} \delta(t - T) dt = e^{-i\omega T}$$

C. Differentiation: Consider a system F_{diff} whose output is the derivative of the input. We can't write an impulse response for this system in a straightforward way, because the derivative of a delta-function is not defined. But we can determine its transfer function, by considering its response to sinusoids $e^{i\omega t}$. What is its transfer function $\hat{f}_{diff}(\omega)$?

$$F_{\it diff}$$
 takes $e^{i\omega t}$ into $\frac{d}{dt}e^{i\omega t}=i\omega e^{i\omega t}$. So $F_{\it diff}$ multiplies $e^{i\omega t}$ by $i\omega$. Therefore, $\hat{f}_{\it diff}(\omega)=i\omega$.

Note that $F_{diff} = \lim_{T \to 0} \frac{f_0 - f_T}{T}$ (the definition of the derivative). Correspondingly,

$$\lim_{T\to 0} \frac{\hat{f}_0(\omega) - \hat{f}_T(\omega)}{T} = \lim_{T\to 0} \frac{1 - e^{-i\omega T}}{T} = \lim_{T\to 0} \frac{1 - (1 - i\omega T)}{T} = \lim_{T\to 0} \frac{i\omega T}{T} = i\omega = \hat{f}_{diff}(\omega)$$

Q2: Biased diffusion

In the notes, we modeled diffusion as a random walk from x=0 to $x=\pm b$, with equal probability, in time ΔT . That is, $F_{\Delta T}(x)=\frac{1}{2}\big(\delta(x-b)+\delta(x+b)\big)$. We saw that this had a stable limit as $\Delta T\to 0$ if $b^2=A\Delta T$, i.e., $b=\sqrt{A\Delta T}$.

Now consider a biased process, in which the probability of a step to +b is $\frac{1}{2}(1+\alpha)$ and the probability of a step to -b is $\frac{1}{2}(1-\alpha)$. So now, $F_{\Delta T}(x) = \frac{1}{2}((1+\alpha)\delta(x-b) + (1-\alpha)\delta(x+b))$.

A. Determine $\hat{F}_{\Delta T}(\omega)$.

$$\begin{split} \hat{F}_{\Delta T}(\omega) &= \int_{-\infty}^{\infty} F_{\Delta T}(x) e^{-i\omega x} dx = \frac{1}{2} \int_{-\infty}^{\infty} \left((1+\alpha)\delta(x-b) + (1+\alpha)\delta(x+b) \right) e^{-i\omega x} dx \\ &= \frac{1}{2} \int_{-\infty}^{\infty} \left(\delta(x-b) + \delta(x+b) \right) e^{-i\omega x} dx + \frac{\alpha}{2} \int_{-\infty}^{\infty} \left(\delta(x-b) - \delta(x+b) \right) e^{-i\omega x} dx \\ &= \frac{1}{2} \left(e^{-i\omega b} + e^{i\omega b} \right) + \frac{\alpha}{2} \left(e^{-i\omega b} - e^{i\omega b} \right) = \cos(\omega b) - i\alpha \sin(\omega b) \end{split}$$

B. How should α vary with ΔT to ensure a stable limit for $\hat{F}_T(\omega) = \lim_{\Delta T \to 0} \left(\hat{F}_{\Delta T}(\omega)\right)^{T/\Delta T}$ as $\Delta T \to 0$, and what is this limit?

For small b

$$\hat{F}_{\Delta T}(\omega) = \cos(\omega b) - i\alpha \sin(\omega b) \approx 1 - \frac{1}{2}b^2\omega^2 - i\alpha\omega b \approx e^{-\frac{1}{2}b^2\omega^2 - i\alpha\omega b}.$$

So

$$\left(\hat{F}_{\Delta T}(\omega)\right)^{T/\Delta T}pprox e^{\left(-rac{1}{2}b^2\omega^2-ilpha\omega b
ight)rac{T}{\Delta T}}.$$

We need $b^2/\Delta T$ and $\alpha b/\Delta T$ to have a stable limit as $\Delta T\to 0$. So $b^2/\Delta T=A$ implies $b=\sqrt{A\Delta T}$, and $\alpha b/\Delta T=h$ implies $\alpha=h\Delta T/b=\frac{h\Delta T}{\sqrt{A\Delta T}}=h\sqrt{\frac{\Delta T}{A}}$.

So
$$\hat{F}_T(\omega) = \lim_{\Delta T \to 0} \left(\hat{F}_{\Delta T}(\omega) \right)^{T/\Delta T} = e^{\left[-\frac{1}{2}b^2\omega^2 - i\alpha\omega b\right]\frac{T}{\Delta T}} = e^{-\omega^2AT/2 - i\omega\alpha bT/\Delta T} = e^{-\omega^2AT/2 - i\omega hT}$$

C. If, at time 0, the distribution is $p_0(x) = \delta(x)$, what is the distribution $p_T(x)$ at time T? $\hat{p}_T(\omega) = \hat{F}_T(\omega)\hat{p}(0)$, and since $p_0(x) = \delta(x)$, $\hat{p}(0) = 1$. So $\hat{p}_T(\omega) = \hat{F}_T(\omega) = e^{-\omega^2 AT/2 + i\omega hT}$. Inverting the transform,

$$p_T(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{p}_T(\omega) e^{i\omega x} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\omega^2 AT/2 - i\omega hT} e^{i\omega x} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\omega^2 AT/2} e^{i\omega(x - hT)} d\omega.$$

The final integral is the same as the one that arose for unbiased diffusion (notes), but with x - hT replacing x.

So
$$p_T(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{p}_T(\omega) e^{i\omega x} d\omega = \frac{1}{\sqrt{2\pi AT}} e^{-(x-hT)^2/2AT}$$
, a Gaussian centered at $x = hT$ whose variance is \sqrt{AT} .

Not surprisingly, when the probabilities of leftward and rightward steps are unequal, the distribution drifts by an amount proportional to time.