Linear Systems, Black Boxes, and Beyond

Homework #1 (2014-2015), Questions

Q1: Impulse responses and transfer functions

A. Exponential decay: For a system F with an impulse response $f(t) = \begin{cases} \lambda e^{-\lambda t}, t \ge 0\\ 0, t < 0 \end{cases}$, find the transfer function $\hat{f}(\omega)$.

B. Pure delay: For a system F_T with an impulse response $f_T(t) = \delta(t-T)$, find the transfer function $\hat{f}_T(\omega)$.

C. Differentiation: Consider a system F_{diff} whose output is the derivative of the input. We can't write an impulse response for this system in a straightforward way, because the derivative of a delta-function is not defined. But we can determine its transfer function, by considering its response to sinusoids $e^{i\omega t}$. What is its transfer function $\hat{f}_{diff}(\omega)$?

Q2: Biased diffusion

In the notes, we modeled diffusion as a random walk from x = 0 to $x = \pm b$, with equal probability, in time ΔT . That is, $F_{\Delta T}(x) = \frac{1}{2} (\delta(x-b) + \delta(x+b))$. We saw that this had a stable limit as $\Delta T \to 0$ if $b^2 = A \Delta T$, i.e., $b = \sqrt{A \Delta T}$.

Now consider a biased process, in which the probability of a step to +b is $\frac{1}{2}(1+\alpha)$ and the probability of a step to -b is $\frac{1}{2}(1-\alpha)$. So now, $F_{\Delta T}(x) = \frac{1}{2}((1+\alpha)\delta(x-b) + (1-\alpha)\delta(x+b))$.

A. Determine $\hat{F}_{\Delta T}(\omega)$.

B. How should α vary with ΔT to ensure a stable limit for $\hat{F}_T(\omega) = \lim_{\Delta T \to 0} \left(\hat{F}_{\Delta T}(\omega) \right)^{T/\Delta T}$ as $\Delta T \to 0$, and what is this limit?

C. If, at time 0, the distribution is $p_0(x) = \delta(x)$, what is the distribution $p_T(x)$ at time T?