Linear Systems, Black Boxes, and Beyond

Homework #2 (2014-2015), Answers

Q1: Power spectra of some random processes.

Say an output, \(y(t) \), is related to an input, \(x(t) \) by \(\frac{dy}{dt} = x - ky \). That is, \(y \) integrates \(x \), but tends to return (decay) to 0 at a rate \(k \).

A. Determine the transfer function that relates \(y \) to \(x \). (Hint – find the response to \(x(t) = e^{i\omega t} \)).

The relationship between \(y(t) \) and \(x(t) \) is linear and time-translation-invariant. So if \(x(t) = e^{i\omega t} \), then \(y(t) \) must be a multiple of \(x(t) \). So say \(y(t) = \hat{L}(\omega)e^{i\omega t} \). Then \(\frac{dy}{dt} = i\omega \hat{L}(\omega)e^{i\omega t} \).

Substituting for each of the terms in \(\frac{dy}{dt} = x - ky \), \(i\omega \hat{L}(\omega)e^{i\omega t} = e^{i\omega t} - k\hat{L}(\omega)e^{i\omega t} \). Solving for \(\hat{L}(\omega) \) yields \((i\omega + k)\hat{L}(\omega)e^{i\omega t} = e^{i\omega t} \), or, \(\hat{L}(\omega) = \frac{1}{k + i\omega} \).

Note the resemblance to Q1 of last week.

B. In the above scenario, if \(x(t) \) is white noise with power per bandwidth equal to \(a \), i.e., \(P_x(\omega) = a \), find \(P_y(\omega) \).

\[
P_y(\omega) = \left| \hat{L}(\omega) \right|^2 P_x(\omega), \text{ so } P_y(\omega) = \left| \frac{1}{k + i\omega} \right|^2 a = \frac{a}{k^2 + \omega^2}.
\]

C. In the limit that the rate is extremely slow (i.e., as \(k \to 0 \)), the above system simply integrates its input. What is its power spectrum?

\[
P_y(\omega) = \lim_{k \to 0} \frac{a}{k^2 + \omega^2} = \frac{a}{\omega^2}.
\]

Q2. Say a system \(F \) is a parallel combination of two systems: one component is \(2kL \) (where \(L \) is as above); the second is system whose response to \(x(t) \) is \(-x(t) \).

A. What is the transfer function \(\hat{F}(\omega) \)?

Since \(F = 2kL - I \), \(\hat{F}(\omega) = 2k\hat{L}(\omega) - 1 = \frac{2k}{k + i\omega} - 1 = \frac{k - i\omega}{k + i\omega} \).

B. Given an input \(x(t) \) and an output \(y(t) \), how are the power spectra of input and output related?

\[
P_y(\omega) = \left| \hat{F}(\omega) \right|^2 P_x(\omega) = \left(\frac{\left| k - i\omega \right|^2}{k + i\omega} \right)^2 P_x(\omega) = \left(\frac{\left| k - i\omega \right|^2}{k + i\omega} \right)^2 P_x(\omega) = P_x(\omega).
\]

Note that this shows that knowing that the amplitude of a transfer function is unity does not mean that the transfer function itself is unity, or even just a delay \(e^{-i\omega t} \) – in this case, \(\left| \hat{F}(\omega) \right| = 1 \) but \(\hat{F}(\omega) = \frac{k - i\omega}{k + i\omega} \).