Q1: Power spectra of some random processes.

Say an output, $y(t)$, is related to an input, $x(t)$ by $\frac{d y}{d t}=x-k y$. That is, y integrates x, but tends to return (decay) to 0 at a rate k.
A. Determine the transfer function that relates y to x. (Hint - find the response to $\left.x(t)=e^{i \omega t}\right)$.

The relationship between $y(t)$ and $x(t)$ is linear and time-translation-invariant. So if $x(t)=e^{i \omega t}$, then $y(t)$ must be a multiple of $x(t)$. So say $y(t)=\hat{L}(\omega) e^{i \omega t}$. Then $\frac{d y}{d t}=i \omega \hat{L}(\omega) e^{i \omega t}$.
Substituting for each of the terms in $\frac{d y}{d t}=x-k y, i \omega \hat{L}(\omega) e^{i \omega t}=e^{i \omega t}-k \hat{L}(\omega) e^{i \omega t}$. Solving for $\hat{L}(\omega)$ yields $(i \omega+k) \hat{L}(\omega) e^{i \omega t}=e^{i \omega t}$, or, $\hat{L}(\omega)=\frac{1}{k+i \omega}$.

Note the resemblance to Q1 of last week.
B. In the above scenario, if $x(t)$ is white noise with power per bandwidth equal to a, i.e., $P_{X}(\omega)=a$, find $P_{Y}(\omega)$.
$P_{Y}(\omega)=|\hat{L}(\omega)|^{2} P_{X}(\omega)$, so $P_{Y}(\omega)=\left|\frac{1}{k+i \omega}\right|^{2} a=\frac{a}{k^{2}+\omega^{2}}$.
C. In the limit that the rate is extremely slow (i.e., as $k \rightarrow 0$), the above system simply integrates its input. What is its power spectrum?
$P_{Y}(\omega)=\lim _{k \rightarrow 0} \frac{a}{k^{2}+\omega^{2}}=\frac{a}{\omega^{2}}$.
Q2. Say a system F is a parallel combination of two systems: one component is $2 k L$ (where L is as above); the second is system whose response to $x(t)$ is $-x(t)$.
A. What is the transfer function $\hat{F}(\omega)$?

Since $F=2 k L-I, \hat{F}(\omega)=2 k \hat{L}(\omega)-1=\frac{2 k}{k+i \omega}-1=\frac{k-i \omega}{k+i \omega}$.
B. Given an input $x(t)$ and an output $y(t)$, how are the power spectra of input and output related?

$$
P_{Y}(\omega)=|\hat{F}(\omega)|^{2} P_{X}(\omega)=\left|\frac{k-i \omega}{k+i \omega}\right|^{2} P_{X}(\omega)=\frac{|k-i \omega|^{2}}{|k+i \omega|^{2}} P_{X}(\omega)=P_{X}(\omega) .
$$

Note that this shows that knowing that the amplitude of a transfer function is unity does not mean that the transfer function itself is unity, or even just a delay $e^{-i \omega T}$ - in this case, $|\hat{F}(\omega)|=1$ but $\hat{F}(\omega)=\frac{k-i \omega}{k+i \omega}$.

