Linear Systems, Black Boxes, and Beyond
Homework \#4 (2014-2015), Answers

Q1: Covariances in a network

[Same set-up as Q1 of Homework 3] Given the following network, where F, G, and H are linear filters with transfer functions $\tilde{F}(\omega), \tilde{G}(\omega)$, and $\tilde{H}(\omega)$, and $x(t)$ and $y(t)$ are independent noise inputs with power spectra $P_{X}(\omega)$ and $P_{Y}(\omega)$:

A. Calculate the cross-spectra $P_{Z, X}(\omega)$ and $P_{Z, Y}(\omega)$.
(Referring to last week's homework), we have $\tilde{z}(\omega)=\tilde{K}(\omega)((\tilde{F}(\omega)+\tilde{G}(\omega)) \tilde{x}(\omega)+\tilde{y}(\omega))$, where $\tilde{K}(\omega)=\frac{\tilde{H}(\omega)}{1-\tilde{H}(\omega) \tilde{G}(\omega)}$.
$P_{Z, X}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{z}(\omega) \overline{\tilde{x}(\omega)}\rangle=\lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{K}(\omega)((\tilde{F}(\omega)+\tilde{G}(\omega)) \tilde{x}(\omega)+\tilde{y}(\omega)) \overline{\tilde{x}(\omega)}\rangle$. Since $x(t)$ and $y(t)$ are independent, $\langle\tilde{y}(\omega) \overline{\tilde{x}(\omega)}\rangle=0$, so

$$
\begin{aligned}
& P_{Z, X}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{K}(\omega)(\tilde{F}(\omega)+\tilde{G}(\omega)) \tilde{x}(\omega) \overline{\tilde{x}(\omega)}\rangle \\
& =\lim _{T \rightarrow \infty} \frac{1}{T} \tilde{K}(\omega)(\tilde{F}(\omega)+\tilde{G}(\omega))\langle\tilde{x}(\omega) \overline{\tilde{x}(\omega)}\rangle \\
& =\tilde{K}(\omega)(\tilde{F}(\omega)+\tilde{G}(\omega)) P_{X}(\omega)
\end{aligned}
$$

Similarly,
$P_{Z, Y}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{z}(\omega) \overline{\tilde{y}(\omega)}\rangle=\lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{K}(\omega)((\tilde{F}(\omega)+\tilde{G}(\omega)) \tilde{x}(\omega)+\tilde{y}(\omega)) \overline{\tilde{y}(\omega)}\rangle$. Again using $\langle\tilde{y}(\omega) \overline{\tilde{x}(\omega)}\rangle=0$,
$P_{Z, Y}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{z}(\omega) \overline{\tilde{y}(\omega)}\rangle=\lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{K}(\omega) \tilde{y}(\omega) \overline{\tilde{y}(\omega)}\rangle=\tilde{K}(\omega) \lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{y}(\omega) \overline{\tilde{y}(\omega)}\rangle=\tilde{K}(\omega) P_{Y}(\omega)$.
B. Now assume that $x(t)$ and $y(t)$ are NOT independent, and their dependence is characterized by a nonzero cross-spectrum $P_{X, Y}(\omega)$. Calculate the power spectrum $P_{Z}(\omega)$ in terms of $P_{X}(\omega), P_{Y}(\omega)$, and $P_{X, Y}(\omega)$.

We want to find $\left.P_{Z}(\omega)=\left.\lim _{T \rightarrow \infty} \frac{1}{T}\langle | \tilde{z}(\omega)\right|^{2}\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{z}(\omega) \overline{\tilde{z}(\omega)}\rangle$ Again using $\tilde{z}(\omega)=\tilde{K}(\omega)((\tilde{F}(\omega)+\tilde{G}(\omega)) \tilde{x}(\omega)+\tilde{y}(\omega))$,

$$
\begin{aligned}
& \langle\tilde{z}(\omega) \overline{\tilde{z}(\omega)}\rangle=\langle\tilde{K}(\omega)((\tilde{F}(\omega)+\tilde{G}(\omega)) \tilde{x}(\omega)+\tilde{y}(\omega)) \overline{\tilde{K}(\omega)((\tilde{F}(\omega)+\tilde{G}(\omega)) \tilde{x}(\omega)+\tilde{y}(\omega))}\rangle \\
& =\tilde{K}(\omega) \overline{\tilde{K}(\omega)} \bullet \\
& \langle(\tilde{F}(\omega)+\tilde{G}(\omega)) \tilde{x}(\omega) \overline{(\tilde{F}(\omega)+\tilde{G}(\omega)) \tilde{x}(\omega)}+(\tilde{F}(\omega)+\tilde{G}(\omega)) \tilde{x}(\omega) \overline{\tilde{y}(\omega)}+\tilde{y}(\omega) \overline{(\tilde{F}(\omega)+\tilde{G}(\omega)) \tilde{x}(\omega)}+\tilde{y}(\omega) \overline{\tilde{y}(\omega)}\rangle . \\
& =|\tilde{K}(\omega)|^{2} \bullet \\
& \left.\langle | \tilde{F}(\omega)+\left.\tilde{G}(\omega)\right|^{2} \tilde{x}(\omega) \overline{\tilde{x}(\omega)}+(\tilde{F}(\omega)+\tilde{G}(\omega)) \tilde{x}(\omega) \overline{\tilde{y}(\omega)}+\overline{(\tilde{F}(\omega)+\tilde{G}(\omega))} \tilde{y}(\omega) \overline{\tilde{x}(\omega)}+\tilde{y}(\omega) \overline{\tilde{y}(\omega)}\right\rangle
\end{aligned}
$$

So

$$
\begin{aligned}
& P_{Z}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{z}(\omega) \overline{\tilde{z}(\omega)}\rangle \\
& =|\tilde{K}(\omega)|^{2} \bullet \\
& \left.\lim _{T \rightarrow \infty} \frac{1}{T}\langle | \tilde{F}(\omega)+\left.\tilde{G}(\omega)\right|^{2} \tilde{x}(\omega) \overline{\tilde{x}(\omega)}+(\tilde{F}(\omega)+\tilde{G}(\omega)) \tilde{x}(\omega) \overline{\tilde{y}(\omega)}+\overline{(\tilde{F}(\omega)+\tilde{G}(\omega)} \tilde{y}(\omega) \overline{\tilde{x}(\omega)}+\tilde{y}(\omega) \overline{\tilde{y}(\omega)}\right\rangle \\
& =|\tilde{K}(\omega)|^{2}\left(|\tilde{F}(\omega)+\tilde{G}(\omega)|^{2} P_{X}(\omega)+(\tilde{F}(\omega)+\tilde{G}(\omega)) P_{X, Y}+\overline{(\tilde{F}(\omega)+\tilde{G}(\omega))} \overline{P_{X, Y}}+P_{Y}(\omega)\right)
\end{aligned}
$$

Q2. Multiple signals with common and private noise sources
Say there are N observed signals $z_{i}(t)$, each of which is the result of adding a common noise source $x(t)$, filtered by a linear filter F_{i}, to a private noise source $y_{i}(t)$, filtered by a linear filter G_{i}. All the noises $x(t)$ and $y_{i}(t)$ are assumed independent.
A. Determine the cross-spectra $P_{Z_{i}, Z_{j}}$ in terms of the power spectra $P_{X}, P_{Y_{i}}$, and the filter characteristics \tilde{F}_{i} and \tilde{G}_{i}.
The Fourier estimates $\tilde{z}_{i}(\omega)$ are given by $\tilde{z}_{i}(\omega)=\tilde{F}_{i}(\omega) \tilde{x}(\omega)+\tilde{G}_{i}(\omega) \tilde{y}(\omega)$, so
$\left\langle\tilde{z}_{i}(\omega) \overline{\tilde{z}_{j}(\omega)}\right\rangle=\left\langle\left(\tilde{F}_{i}(\omega) \tilde{x}(\omega)+\tilde{G}_{i}(\omega) \tilde{y}_{i}(\omega)\right)\left(\overline{\tilde{F}_{j}(\omega) \tilde{x}(\omega)+\tilde{G}_{j}(\omega) \tilde{y}_{j}(\omega)}\right)\right\rangle$. Using independence of all of the noises, $\left\langle\tilde{z}_{i}(\omega) \overline{\tilde{z}_{j}(\omega)}\right\rangle=\left\langle\tilde{F}_{i}(\omega) \tilde{x}(\omega) \overline{\tilde{F}_{j}(\omega) \tilde{x}(\omega)}\right\rangle=\tilde{F}_{i}(\omega) \overline{\tilde{F}_{j}(\omega)}\langle\tilde{x}(\omega) \overline{\tilde{x}(\omega)}\rangle$.
So (for $i \neq j$),
$P_{Z_{i}, Z_{j}}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\left\langle\tilde{z}_{i}(\omega) \overline{\tilde{z}_{j}(\omega)}\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \tilde{F}_{i}(\omega) \overline{\tilde{F}_{j}(\omega)}\langle\tilde{x}(\omega) \overline{\tilde{x}(\omega)}\rangle=\tilde{F}_{i}(\omega) \overline{\tilde{F}_{j}(\omega)} P_{X}(\omega)$.
For $i=j$, the cross-terms involving y do not vanish, so

$$
\begin{aligned}
& P_{Z_{i}, Z_{i}}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\left\langle\tilde{z}_{i}(\omega) \overline{\tilde{z}_{i}(\omega)}\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T}\left(\tilde{F}_{i}(\omega) \overline{\tilde{F}_{i}(\omega)}\langle\tilde{x}(\omega) \overline{\tilde{x}(\omega)}\rangle+\tilde{G}_{i}(\omega) \overline{\tilde{G}_{i}(\omega)}\left\langle\tilde{y}_{i}(\omega) \overline{\tilde{y}_{i}(\omega)}\right\rangle\right) . \\
& =\left|\tilde{F}_{i}(\omega)\right|^{2} P_{X}(\omega)+\left|\tilde{G}_{i}(\omega)\right|^{2} P_{Y_{i}}(\omega)
\end{aligned}
$$

B. Now assume that all of the private noises $y_{i}(t)$ are 0 . Consider, for each frequency ω, the matrix $P_{Z_{i}, Z_{j}}(\omega)$. Does it have any special properties?

It has only one nonzero eigenvalue. To see this, note that $P_{Z_{i}, Z_{j}}(\omega)=\tilde{F}_{i}(\omega) \overline{F_{j}(\omega)} P_{X}(\omega)$, even if $i=j$. So the rows of $P_{Z_{i}, Z_{j}}(\omega)$ are all common multiples of each other. (The same holds for columns). That is, $P_{Z_{i}, Z_{j}}(\omega)$ is the product of a column matrix, consisting of the $\tilde{F}_{i}(\omega)$, and a row matrix, consisting of the $\overline{\tilde{F}_{j}(\omega)}$, and the constant factor P_{X}. So, as a linear transformation, its range is a one-dimensional space, so it can have at most one nonzero eigenvector.

The corresponding eigenvalue is the trace of $P_{Z_{i}, Z_{j}}(\omega)$ (since the trace is always the sum of the eigenvalues). $\operatorname{tr}\left(P_{Z_{i}, Z_{j}}(\omega)\right)=\sum_{i} P_{Z_{i}, Z_{i}}(\omega)=P_{X}(\omega) \sum_{i}\left|\tilde{F}_{i}(\omega)\right|^{2}$.

Note: the "global coherence" is defined as the ratio of the largest eigenvalue of the cross-spectral matrix $P_{Z_{i}, Z_{j}}(\omega)$ to its trace. In the scenario in which all signals have a shared noise (and no private noise sources), we have just shown that the global coherence is 1 .

