Linear Systems, Black Boxes, and Beyond

Homework #4 (2014-2015), Questions

Q1: Covariances in a network

[Same set-up as Q1 of Homework 3] Given the following network, where F, G, and H are linear filters with transfer functions \(\tilde{F}(\omega) \), \(\tilde{G}(\omega) \), and \(\tilde{H}(\omega) \), and \(x(t) \) and \(y(t) \) are independent noise inputs with power spectra \(P_x(\omega) \) and \(P_y(\omega) \):

\[
\begin{align*}
F & \quad a(t) \\
+ & \quad b(t) \\
G & \quad c(t) \\
+ & \quad d(t) \\
H & \quad z(t)
\end{align*}
\]

A. Calculate the cross-spectra \(Z_{XP}(\omega) \) and \(Z_{YP}(\omega) \).

B. Now assume that \(x(t) \) and \(y(t) \) are NOT independent, and their dependence is characterized by a nonzero cross-spectrum \(X_{YP}(\omega) \). Calculate the power spectrum \(Z(\omega) \) in terms of \(X(\omega) \), \(P_y(\omega) \), and \(X_{YP}(\omega) \).

Q2. Multiple signals with common and private noise sources

Say there are \(N \) observed signals \(z_i(t) \), each of which is the result of adding a common noise source \(x(t) \), filtered by a linear filter \(F_i \), to a private noise source \(y_i(t) \), filtered by a linear filter \(G_i \). All the noises \(x(t) \) and \(y_i(t) \) are assumed independent.

A. Determine the cross-spectra \(P_{z_i z_j} \) in terms of the power spectra \(P_x \), \(P_{y_i} \), and the filter characteristics \(\tilde{F}_i \) and \(\tilde{G}_i \).

B. Now assume that all of the private noises \(y_i(t) \) are 0. Consider, for each frequency \(\omega \), the matrix \(P_{z_i z_j}(\omega) \). Does it have any special properties?