Linear Transformations and Group Representations

Homework \#1 (2014-2015), Answers

Q1: Eigenvectors of some linear operators (linear transformations) in matrix form

In each case, use the characteristic equation to find the eigenvalues, the eigenvectors, the dimensions of the eigenspaces, and whether a basis can be chosen from the eigenvectors.
A. $Q=\left(\begin{array}{ll}p & 0 \\ 0 & q\end{array}\right)$, with $p \neq q$.

First, use the characteristic equation to find the eigenvalues.
$\operatorname{det}(z I-Q)=\operatorname{det}\left(\begin{array}{cc}z-p & 0 \\ 0 & z-q\end{array}\right)=(z-p)(z-q) . \operatorname{det}(z I-Q)=0$ requires $(z-p)(z-q)=0$, i.e.,
$z=p$ or $z=q$.

To find the eigenvector with eigenvalue p (if you can't guess what it is): Say V has basis elements e_{1} and e_{2}, expressed as columns $e_{1}=\binom{1}{0}$ and $e_{2}=\binom{0}{1}$, and the eigenvector is $v=a e_{1}+b e_{2}=\binom{a}{b}$. Then $\quad Q v=Q\binom{a}{b}=\left(\begin{array}{ll}p & 0 \\ 0 & q\end{array}\right)\binom{a}{b}=\binom{p a}{q b}=p a e_{1}+q b e_{2}$. So $Q v=p v$ implies that $Q v=p a e_{1}+q b e_{2}$ and $p v=p a e_{1}+p b e_{2}$ are the same, which means that $p a e_{1}+q b e_{2}=p a e_{1}+p b e_{2}$, i.e., $q b e_{2}=p b e_{2}$. Since $p \neq q$, this means that $b=0$, i.e., $v=a e_{1}$. By the same argument, the eigenvector for eigenvalue q is $v=b e_{2}$.
The eigenvectors are each multiples of the coordinate basis, and therefore form a basis.
In other words, the eigenvalues of a diagonal matrix are the entries on the diagonal, and the eigenvector corresponding to the k th element on the diagonal is a vector along the k th coordinate.
B. $A=\left(\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right)$, with $r \neq 0$.

First, use the characteristic equation to find the eigenvalues.
$\operatorname{det}(z I-A)=\operatorname{det}\left(\begin{array}{cc}z-1 & -r \\ 0 & z-1\end{array}\right)=(z-1)^{2}$.
$\operatorname{det}(z I-A)=0$ requires $z=1$, so the only eigenvalue of A is 1 .
As in part A, say V has basis elements e_{1} and e_{2}, expressed as columns $e_{1}=\binom{1}{0}$ and $e_{2}=\binom{0}{1}$.
Then $A e_{1}=e_{1}$ and $A e_{2}=r e_{1}+e_{2}$. So e_{1} is an eigenvector of eigenvalue 1 . To look for any others: Let $v=a e_{1}+b e_{2}$. Then $A v=A\left(a e_{1}+b e_{2}\right)=a e_{1}+b\left(r e_{1}+e_{2}\right)=(a+b r) e_{1}+b e_{2}$.
$A v=v$ implies $a e_{1}+b e_{2}=(a+b r) e_{1}+b e_{2}$. Since e_{1} and e_{2} are linearly independent (they form a basis), their coefficients must be equal. For e_{1}, this requires $a=a+b r$, i.e., $b=0$. For e_{2}, the coefficients are always equal. So the only eigenvalues have $b=0$, i.e., the only eigenvalues are e_{1} and its multiples.

So there is one eigenvalue, 1 , whose eigenspace has dimension 1 , spanned by the eigenvector $e_{1}=\binom{1}{0}$. Since A operates in a two-dimensional vector space, the eigenvectors cannot form a basis.
C. $B=\left(\begin{array}{ll}q & r \\ r & q\end{array}\right)$ (assume $q>r>0$).

Again, first use the determinant to find the eigenvalues.
$\operatorname{det}(z I-B)=\operatorname{det}\left(\begin{array}{cc}z-q & -r \\ -r & z-q\end{array}\right)=(z-q)^{2}-r^{2} . \operatorname{det}(z I-B)=0$ solves for $z=q \pm r$, so these are the eigenvalues of B. To find the eigenvectors: As in part A, say $e_{1}=\binom{1}{0}$ and $e_{2}=\binom{0}{1}$ and v is an eigenvector with $v=a e_{1}+b e_{2} . B e_{1}=q e_{1}+r e_{2} . B e_{2}=r e_{1}+q e_{2}$. So $B v=a B e_{1}+b B e_{2}=a\left(q e_{1}+r e_{2}\right)+b\left(r e_{1}+q e_{2}\right)=(a q+b r) e_{1}+(a r+b q) e_{2}$.

Looking for the eigenvector of eigenvalue $q+r$:
$B v=(q+r) v$ implies $(a q+b r) e_{1}+(a r+b q) e_{2}=(q+r) a e_{1}+(q+r) b e_{2}$. Since e_{1} and e_{2} are linearly independent, equality can only hold if coefficients of e_{1} match, and coefficients of e_{2} match.
For $e_{1}: a q+b r=a q+a r$; For $e_{2}: a r+b q=b q+b r$. Both solve for $a=b$. So the eigenvectors corresponding to the eigenvalue $q+r$ are multiples of $e_{1}+e_{2}$, i.e., of $\binom{1}{1}$.

For the eigenvectors of eigenvalue $q-r$:
$B v=(q-r) v$ implies $(a q+b r) e_{1}+(a r+b q) e_{2}=(q-r) a e_{1}+(q-r) b e_{2}$. Since e_{1} and e_{2} are linearly independent, equality can only hold if coefficients of e_{1} match, and coefficients of e_{2} match.
For $e_{1}: a q+b r=a q-a r$; For $e_{2}: a r+b q=b q-b r$. Both solve for $a=-b$. So the eigenvectors corresponding to the eigenvalue $q-r$ are multiples of $e_{1}-e_{2}$, i.e., of $\binom{1}{-1}$.
So there are two eigenvalues, $q+r$ and $q-r$, each with eigenspace of dimension 1 , spanned by $e_{1}+e_{2}=\binom{1}{1}$, and $e_{1}-e_{2}=\binom{1}{-1}$. They form a basis.
D. $C=\left(\begin{array}{cc}q & r \\ -r & q\end{array}\right)$

Again, first use the determinant to find the eigenvalues.
$\operatorname{det}(z I-B)=\operatorname{det}\left(\begin{array}{cc}z-q & -r \\ r & z-q\end{array}\right)=(z-q)^{2}+r^{2} . \operatorname{det}(z I-B)=0$ solves for $z=q \pm i r$, so these are the eigenvalues of B. To find the eigenvectors: As in part B, say $e_{1}=\binom{1}{0}$ and $e_{2}=\binom{0}{1}$ and v is an eigenvector with $v=a e_{1}+b e_{2} . C e_{1}=q e_{1}+r e_{2} . C e_{2}=-r e_{1}+q e_{2}$. So $C v=a C e_{1}+b C e_{2}=a\left(q e_{1}+r e_{2}\right)+b\left(-r e_{1}+q e_{2}\right)=(a q-b r) e_{1}+(a r+b q) e_{2}$.

Looking for the eigenvector of eigenvalue $q+$ ir :
$C v=(q+i r) v$ implies $(a q-b r) e_{1}+(a r+b q) e_{2}=(q+i r) a e_{1}+(q+i r) b e_{2}$. Since e_{1} and e_{2} are linearly independent, equality can only hold if coefficients of e_{1} match, and coefficients of e_{2} match.
For $e_{1}: a q-b r=a q+a i r$; For $e_{2}: a r+b q=b q+b i r$. Both solve for $a=i b$. So the
eigenvectors corresponding to the eigenvalue $q+\operatorname{ir}$ are multiples of $e_{1}+i e_{2}$, i.e., of $\binom{1}{i}$.
Similarly (or, remembering that everything is symmetric with respect to complex conjugation) the eigenvector associated with $z=q-i r=\overline{q+i r}$ must be $\overline{\binom{1}{i}}=\binom{1}{-i}$.

Q2: Eigenvectors of derived linear operators

Say X and Y are linear transformations from a vector space V to itself, and v is an eigenvector both of X, with eigenvalue λ_{X}, and of Y, with eigenvalue λ_{Y}.
A. Show that v is also an eigenvector of the transformation $X+Y$, and find its eigenvalue. $(X+Y) v=X v+Y v=\lambda_{X} v+\lambda_{Y} v=\left(\lambda_{X}+\lambda_{Y}\right) v$. So the eigenvalue is $\lambda_{X}+\lambda_{Y}$.
B. Show that v is also an eigenvector of the transformation αX, where α is a scalar, and find its eigenvalue.
$(\alpha X) v=\alpha(X v)=\alpha\left(\lambda_{X} v\right)=\left(\alpha \lambda_{X}\right) v$. So the eigenvalue is $\alpha \lambda_{X}$.
C. Show that v is also an eigenvector of the transformation $X Y$, and find its eigenvalue. $(X Y) v=X(Y v)=X\left(\lambda_{Y} v\right)=\lambda_{Y} X(v)=\lambda_{Y} \lambda_{X} v=\left(\lambda_{X} \lambda_{Y}\right) v$. So the eigenvalue is $\lambda_{X} \lambda_{Y}$.
D. Show that v is also an eigenvector of the transformation $X Y-Y X$, and find its eigenvalue.

Part C says that v is an eigenvector of $X Y$, with eigenvalue $\lambda_{X} \lambda_{Y}$. Part C also says that v is an eigenvector of $Y X$, with eigenvalue $\lambda_{Y} \lambda_{X}$. So part B (with $\alpha=-1$) says that v is an eigenvector of $-Y X$, with eigenvalue $-\lambda_{Y} \lambda_{X}$. Now apply part A to the sum of two transformations, $X Y$ and $-Y X . v$ is an eigenvector of each, so it is an eigenvector of their sum, $X Y-Y X$. Ant the eigenvalue is the sum of the component eigenvalues, $\lambda_{X} \lambda_{Y}-\lambda_{Y} \lambda_{X}=0$.
Interesting -since X and Y are matrices, they typically don't commute, i.e., we can't expect that $X Y-Y X=0$. But if they share a common eigenvector, it is an eigenvector that has an eigenvalue of 0 .

