Linear Transformations and Group Representations

Homework \#1 (2014-2015), Questions
Q1: Eigenvectors of some linear operators (linear transformations) in matrix form
In each case, use the characteristic equation to find the eigenvalues, the eigenvectors, the dimensions of the eigenspaces, and whether a basis can be chosen from the eigenvectors.
A. $Q=\left(\begin{array}{ll}p & 0 \\ 0 & q\end{array}\right)$, with $p \neq q$.
B. $A=\left(\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right)$, with $r \neq 0$.
C. $B=\left(\begin{array}{ll}q & r \\ r & q\end{array}\right)$ (assume $q>r>0$).
D. $C=\left(\begin{array}{cc}q & r \\ -r & q\end{array}\right)$

Q2: Eigenvectors of derived linear operators
Say X and Y are linear transformations from a vector space V to itself, and v is an eigenvector both of X, with eigenvalue λ_{X}, and of Y, with eigenvalue λ_{Y}.
A. Show that v is also an eigenvector of the transformation $X+Y$, and find its eigenvalue.
B. Show that v is also an eigenvector of the transformation αX, where α is a scalar, and find its eigenvalue.
C. Show that v is also an eigenvector of the transformation $X Y$, and find its eigenvalue.
D. Show that v is also an eigenvector of the transformation $X Y-Y X$, and find its eigenvalue.

