Linear Transformations and Group Representations

Homework \#2 (2014-2015), Answers

Q1: Properties of self-adjoint and unitary operators

A. Say A and B are both self-adjoint. Is $A+B$ self-adjoint?

Yes. $\langle(A+B) v, w\rangle=\langle A v, w\rangle+\langle B v, w\rangle=\left\langle v, A^{*} w\right\rangle+\left\langle v, B^{*} w\right\rangle$.
Since A and B are both self-adjoint, $\left\langle v, A^{*} w\right\rangle+\left\langle v, B^{*} w\right\rangle=\langle v, A w\rangle+\langle v, B w\rangle=\langle v,(A+B) w\rangle$.
Putting these two lines together, $\langle(A+B) v, w\rangle=\langle v,(A+B) w\rangle$.
B. Say A and B are both self-adjoint. Is $A B$ self-adjoint?

Not necessarily.
$\langle A B v, w\rangle=\left\langle B v, A^{*} w\right\rangle=\left\langle v, B^{*} A^{*} w\right\rangle=\langle v, B A w\rangle$. So $A B$ is self-adjoint only if $A B=B A$.
C. Say A and B are both unitary. Is $A+B$ unitary?

Not necessarily. We would need $(A+B)^{*}=(A+B)^{-1}$, or $(A+B)^{*}(A+B)=I$. But $(A+B)^{*}(A+B)=A^{*} A+A^{*} B+B^{*} A+B^{*} B=I+A^{-1} B+B^{-1} A+I$, so $(A+B)^{*}(A+B)=I$ requires $A^{-1} B+B^{-1} A+I=0$, which is not true in general (consider for example $A=B=I$).
D. Say A and B are both unitary. Is $A B$ unitary?
Yes. $\langle A B v, w\rangle=\left\langle B v, A^{*} w\right\rangle=\left\langle B v, A^{-1} w\right\rangle=\left\langle v, B^{*} A^{-1} w\right\rangle=\left\langle v, B^{-1} A^{-1} w\right\rangle=\left\langle v,(A B)^{-1} w\right\rangle$, so the adjoint of $A B$ is $(A B)^{-1}$, as required for $A B$ to be unitary. Note that this means that the unitary invertible of $\operatorname{Hom}(V, V)$ form a group.

Q2. Time translation is unitary
Recall that the time translation operator D_{T} is defined by $\left(D_{T} v\right)(t)=v(t+T)$. Show that D_{T} is unitary.

We showed that $\left(D_{T}\right)^{*}=D_{-T}$, and also, that $D_{S} D_{T}=D_{S+T}$. So $D_{T} D_{-T}=I$, i.e., $D_{T}\left(D_{T}\right)^{*}=I$, So D_{T} and $\left(D_{T}\right)^{*}=D_{-T}$ are inverses, as required for D_{T} to be unitary.

Q3. Relationship between unitary and self-adjoint operators.
A. Say A is self-adjoint. Show that $(i A)^{*}=-(i A)$.

$$
\langle i A v, w\rangle=i\langle A v, w\rangle=i\left\langle v, A^{*} w\right\rangle=i\langle v, A w\rangle=\langle v, \bar{i} A w\rangle=\langle v,-i A w\rangle . \text { So }(i A)^{*}=-(i A) .
$$

B. Say A is self-adjoint. Show that $U=e^{i A}$ is unitary. Do this by considering the formal power series definition $e^{M}=\sum_{j=0}^{\infty} \frac{1}{j!} M^{j}$.
Using the formal power series definition $e^{M}=\sum_{j=0}^{\infty} \frac{1}{j!} M^{j}$ with $M=i A$, we have $U=e^{i A}=\sum_{j=0}^{\infty} \frac{1}{j!}(i A)^{j} . \quad$ So $\left(e^{i A}\right)^{*}=\sum_{j=0}^{\infty} \frac{1}{j!}\left((i A)^{j}\right)^{*}=\sum_{j=0}^{\infty} \frac{1}{j!}\left((i A)^{*}\right)^{j}$. From part $A, \quad(i A)^{*}=-(i A)$.
So
$U^{*}=\left(e^{i A}\right)^{*}=\sum_{j=0}^{\infty} \frac{1}{j!}\left((i A)^{*}\right)^{j}=\sum_{j=0}^{\infty} \frac{1}{j!}(-i A)^{j}=e^{-i A}=\left(e^{i A}\right)^{-1}=U^{-1}$.

