
Linear Transformations and Group Representations 
 
Homework #4 (2014-2015), Answers 
 
Q1. Irreducible representations of the dihedral group of D4 
 
Here we build on the homework from last week to construct all the irreducible representations of 
dihedral group D4, i.e., the rotations and reflections of a square. We continue to use the following 
notation for its elements: 
 
I : the identity 
R , 1R- : 90-degree rotations right and left ( 4R I= )  
C : rotation by 180 deg ( 2C I= , 2R C= )   
X  , Y : mirror flips in the x- and y-axes ( 2 2 1X Y= = ) 

\M , /M : mirror flips on the two diagonals ( 2 2
\ /M M I= = ). 

 
We had the following table of characters – the last line added in class and is the representation that 
maps a group element to +1 or -1 depending on whether it exchanges the front and back faces of the 
square: 
 L   I  R , 1R-  C  X  , Y  \M , /M  

IL : Trivial rep 1 1 1 1 1 

2 2L ´ : 2 2´  matrices 2 0 -2 0 0 

cornerL : Corner perm 4 0 0 0 2 

sideL : Side perm 4 0 0 2 0 

diagL : Diag perm 2 0 2 0 2 

faceL : Face exchange 1 1 1 -1 -1 

 
We also determined that cornerL , sideL , and diagL  contained one copy of the trivial representation, since 

for each of those, 
1

( ) 1L
g

g
G

c =å . 

 
A. For the representations L  that contain the trivial representation, replace their entries in the above 
character table with the characters of the smaller representations L¢  for which IL L L¢= Å . 

Since the character of a representation M  at a group element g   is given by ( ) ( )M gg tr Mc = , then 

( ) ( ) ( ) ( ) 1 ( ) 1L g g g g Lg tr L tr L I tr L gc c ¢¢ ¢= = Å = + = + , so ( ) ( ) 1LL g gc c¢ = - . 

 
 L   I  R , 1R-  C  X  , Y  \M , /M  

IL : Trivial rep 1 1 1 1 1 

2 2L ´ : 2 2´  matrices 2 0 -2 0 0 

cornerL¢ : Corner perm 3 -1 -1 -1 1 



sideL¢ : Side perm 3 -1 -1 1 -1 

diagL ¢ : Diag perm 1 -1 1 -1 1 

faceL : Face exchange 1 1 1 -1 -1 

 
 
B.  Using the Group Representation Theorem characterization that for irreducible representations, 
characters are orthonormal,  identify the representations that are reducible. 
 

For an irreducible representation, 
21

( , ) ( ) 1L
g

d L L g
G

c= =å .  So we calculate: 

( )2 2 2 2 2
2 2 2 2

1
( , ) 2 2 (0) ( 2) 2 (0) 2 (0) 1

8
d L L´ ´ = + · + - + · + · = , therefore irreducible 

( )2 2 2 2 21
( , ) 3 2 ( 1) ( 1) 2 ( 1) 2 (1) 2

8corner cornerd L L¢ ¢ = + · - + - + · - + · = , therefore reducible 

( )2 2 2 2 21
( , ) 3 2 ( 1) ( 1) 2 (1) 2 ( 1) 2

8side sided L L¢ ¢ = + · - + - + · + · - = , therefore reducible 

( )2 2 2 2 21
( , ) 1 2 ( 1) (1) 2 ( 1) 2 (1) 1

8diag diagd L L¢ ¢ = + · - + + · - + · = , therefore reducible (had to be, dim= 1) 

( )2 2 2 2 21
( , ) 1 2 (1) (1) 2 ( 1) 2 ( 1) 1

8face faced L L¢ ¢ = + · + + · - + · - = , therefore reducible (had to be, dim= 1) 

 L   I  R , 1R-  C  X  , Y  \M , /M  

IL : Trivial rep 1 1 1 1 1  irreducible 

2 2L ´ : 2 2´  matrices 2 0 -2 0 0 irreducible 

cornerL¢ : Corner perm 3 -1 -1 -1 1 reducible 

sideL¢ : Side perm 3 -1 -1 1 -1 reducible 

diagL ¢ : Diag perm 1 -1 1 -1 1 irreducible 

faceL : Face exchange 1 1 1 -1 -1 irreducible 

C. Recall that 
1

( , ) ( ) ( )L M
g

d L M g g
G

c c= å  indicates how ways that an irreducible piece of a 

representation L  can be matched to an irreducible piece of a representation M .  So if L  is irreducible, 
it indicates how many copies of L  are inside of M .  Use this to further reduce the remaining reducible 
representations. 

First, let’s see what’s inside of cornerL¢  (
1

( , ) ( ) ( )L M
g

d L M g g
G

c c= å with  cornerM L¢= , and L  being 

one of the known-irreducible representations): 

( )2 2

1 8
( , ) 2 3 2 (0 ( 1)) ( 2) ( 1) 2 (0 ( 1)) 2 (0 (1)) 1

8 8cornerd L L´ ¢ = · + · · - + - · - + · · - + · · = =  

( )1 8
( , ) 1 3 2 (( 1) ( 1)) (1) ( 1) 2 (( 1) ( 1)) 2 (1 1) 1

8 8diag cornerd L L¢ ¢ = · + · - · - + · - + · - · - + · · = =  



( )1 0
( , ) 1 3 2 ((1) ( 1)) (1) ( 1) 2 (( 1) ( 1)) 2 (( 1) 1) 0

8 8face cornerd L L¢ = · + · · - + · - + · - · - + · - · = =  

So we’ve accounted for all of the three dimensions of cornerL¢ : 2 2corner diagL L L´
¢ ¢= Å , and one chan check 

that 
2 2

( ) ( ) ( )
corner diagLL Lg g gc c c

´¢ ¢= + .    So we don’t find anything new inside of cornerL¢ . 

 

Next, let’s see what’s inside of sideL¢  (
1

( , ) ( ) ( )L M
g

d L M g g
G

c c= å with  sideM L¢= , and L  being one 

of the known-irreducible representations): 

( )2 2

1 8
( , ) 2 3 2 (0 ( 1)) ( 2) ( 1) 2 (0 (1)) 2 (0 ( 1)) 1

8 8sided L L´ ¢ = · + · · - + - · - + · · + · · - = =  

( )1 0
( , ) 1 3 2 (( 1) ( 1)) (1) ( 1) 2 (( 1) (1)) 2 (1 ( 1)) 0

8 8diag sided L L¢ ¢ = · + · - · - + · - + · - · + · · - = =  

( )1 0
( , ) 1 3 2 ((1) ( 1)) (1) ( 1) 2 (( 1) (1)) 2 (( 1) ( 1)) 0

8 8face cornerd L L¢ = · + · · - + · - + · - · + · - · - = =  

So we’ve accounted for only two of the three dimensions of sideL¢ .  There’s one more dimension.  That is, 

2 2side XL L L´
¢ = Å , where 

2 2
( ) ( ) ( )

Xside L LL g g gc c c
´¢ = + .  So 

2 2
( ) ( ) ( ))

X sideL LLg g gc c c
´¢= - , and we will 

add this new irreducible representation to the character table. 
 
 L   I  R , 1R-  C  X  , Y  \M , /M  

IL : Trivial rep 1 1 1 1 1  irreducible 

2 2L ´ : 2 2´  matrices 2 0 -2 0 0 irreducible 

diagL ¢ : Diag perm 1 -1 1 -1 1 irreducible 

faceL : Face exchange 1 1 1 -1 -1 irreducible 

XL : 2 2side XL L L´
¢ = Å  1 -1 1 1 -1 irreducible 

 
D. Show that the table now has all of the irreducible representations of the dihedral group. 
 
Method 1:  There are five conjugate classes (the columns), and the five rows are all different.  Since the 
irreducible characters are orthonormal functions on the conjugate classes, there can’t be any more. 
 
Method 2:  The regular representation contains each irreducible representation, with a multiplicity equal 
to its dimension.  That is, if we have all the irreducible representations, then 

2 2
2

I face Xdiagregular L L L LLc c c c c c
´ ¢= + + + + .  This can be directly verified by summing along the columns 

of the character table  (note the factor of 2 for the 2-dimensional representation 2 2L ´ ). 

 
Q2. Representations of subgroups: an irreducible representation may become reducible, when restricted 
to a subgroup. 
 
Setup:  A representation L  of a group G  is, necessarily, a representation for any subgroup H  of G , 
simply by restricting it to g HÎ  . But if a representation is irreducible on G , it need not be irreducible 



on H .  A trivial example of this is to start with a representation of dimension 1d > , and restrict it to 
the one-element identity subgroup of G ; in this case, the representation maps the identity element to the 
d d´  identity matrix – which clearly is reducible.  But here’s a less-trivial example that illustrates what 
is more generic. 
 
We consider the cyclic group 4 , which is the rotation group of the square – and hence, a subgroup of 

4D  considered in Q1.As in the class notes, n  it has a representation mL  for every nth root of unity, 

which takes a 2 np  rotation to 
2

exp( )
i

m
n

p
.  Here 4n = , and we adopt the notation of Q1, so R is a 

rotation by 2p , 1 3R R- =  is a rotation by 3 2p  ,and 2C R= is a rotation by p .  So the character 

table of n  is 

 
 L   I  R  2R C=  3 1R R-=   
 0L  ( 0m = )  1 1 1 1 

 1L  ( 1m = ) 1 i -1 -i  

 2L  ( 2m = ) 1 -1 1 -1 

 3L  ( 3m = ) 1 -i -1 i 

 
 
Now consider the irreducible representations of 4D , determined in Q1.  Find their characters, 

considered as a representation of 4 .  Which ones are reducible, and which are irreducible?  How do 

they relate to the above irreducible representations of 4 ? 

 
The characters of the representations are just the characters on 4D restricted to 4 . So the table is: 

  L   I  R  C  1R-   

IL : Trivial rep 1 1 1 1 

2 2L ´ : 2 2´  matrices 2 0 -2 0 

diagL ¢ : Diag perm 1 -1 1 -1 

faceL : Face exchange 1 1 1 1 

XL : 2 2side XL L L´
¢ = Å  1 -1 1 -1 

 
The one-dimensional representations have to be irreducible.  Comparing characters of the two tables: 

0IL L= , 2diagL L¢ = , 0faceL L= , 2XL L= . 

The two-dimensional representation 2 2L ´   must be reducible, since 4  is commutative.  Also, by the 

trace formula, ( )
2 2

2 2 2
2 2 2 2

1 1
( , ) ( ) 2 ( 2) 2

4L
g

d L L g
G

c
´´ ´ = = + - =å , confirming that 2 2L ´  is reducible.  



We can find its components by projecting the character of 2 2L ´  on the irreducible representations of 4 : 

( )2 2 0 2 2 2

1
( , ) ( , ) 2 1 ( 2) 1 0

4
d L L d L L´ ´= = · + - · = , 

( )2 2 1 2 2 3

1
( , ) ( , ) 2 1 ( 2) ( 1) 1

4
d L L d L L´ ´= = · + - · - = .   

That is, when restricted from 4D  to 4 , the irreducible 2 2L ´  splits into two pieces: 
2 2 1 3L L Lc c c
´
= + , 

and 2 2 1 3L L L´ = Å .  This behavior is generic:  these two component representations, which capture left- 

and right-rotation respectively, are intrinsically different within 4 , but there is a  larger symmetry, 

included in 4D , which brings them together -- the mirror elements. 

 


