Linear Transformations and Group Representations

Homework \#4 (2014-2015), Questions
Q1. Irreducible representations of the dihedral group of D_{4}
Here we build on the homework from last week to construct all the irreducible representations of dihedral group D_{4}, i.e., the rotations and reflections of a square. We continue to use the following notation for its elements:
I : the identity
$R, R^{-1}: 90$-degree rotations right and left ($R^{4}=I$)
C : rotation by $180 \operatorname{deg}\left(C^{2}=I, R^{2}=C\right)$
X, Y : mirror flips in the x- and y-axes $\left(X^{2}=Y^{2}=1\right)$
$M_{\checkmark}, M_{/}$: mirror flips on the two diagonals $\left(M_{\downarrow}{ }^{2}=M_{/}{ }^{2}=I\right)$.

We had the following table of characters - the last line added in class and is the representation that maps a group element to +1 or -1 depending on whether it exchanges the front and back faces of the square:

L	I	R, R^{-1}	C	X, Y	$M_{\succ}, M_{,}$
$L_{I}:$ Trivial rep	1	1	1	1	1
$L_{2 \times 2}: 2 \times 2$ matrices	2	0	-2	0	0
$L_{\text {correr }}:$ Corner perm	4	0	0	0	2
$L_{\text {side }}:$ Side perm	4	0	0	2	0
$L_{\text {diag }}:$ Diag perm	2	0	2	0	2
$L_{\text {face }}:$ Face exchange	1	1	1	-1	-1

We also determined that $L_{\text {corner }}, L_{\text {side }}$, and $L_{\text {diag }}$ contained one copy of the trivial representation, since for each of those, $\frac{1}{|G|} \sum_{g} \chi_{L}(g)=1$.
A. For the representations L that contain the trivial representation, replace their entries in the above character table with the characters of the smaller representations L^{\prime} for which $L=L^{\prime} \oplus L_{I}$.
B. Using the Group Representation Theorem characterization that for irreducible representations, characters are orthonormal, identify the representations that are reducible.
C. Recall that $d(L, M)=\frac{1}{|G|} \sum_{g} \overline{\chi_{L}(g)} \chi_{M}(g)$ indicates how ways that an irreducible piece of a representation L can be matched to an irreducible piece of a representation M. So if L is irreducible, it indicates how many copies of L are inside of M. Use this to further reduce the remaining reducible representations.
D. Show that the table now has all of the irreducible representations of the dihedral group.

Q2. Representations of subgroups: an irreducible representation may become reducible, when restricted to a subgroup.

Setup: A representation L of a group G is, necessarily, a representation for any subgroup H of G, simply by restricting it to $g \in H$. But if a representation is irreducible on G, it need not be irreducible on H. A trivial example of this is to start with a representation of dimension $d>1$, and restrict it to the one-element identity subgroup of G; in this case, the representation maps the identity element to the $d \times d$ identity matrix - which clearly is reducible. But here's a less-trivial example that illustrates what is more generic.

We consider the cyclic group \mathbb{Z}_{4}, which is the rotation group of the square - and hence, a subgroup of D_{4} considered in Q1.As in the class notes, \mathbb{Z}_{n} it has a representation L_{m} for every nth root of unity, which takes a $2 \pi / n$ rotation to $\exp \left(\frac{2 \pi i}{n} m\right)$. Here $n=4$, and we adopt the notation of Q1, so R is a rotation by $\pi / 2, R^{-1}=R^{3}$ is a rotation by $3 \pi / 2$,and $C=R^{2}$ is a rotation by π. So the character table of \mathbb{Z}_{n} is

L	I	R	$R^{2}=C$	$R^{3}=R^{-1}$
$L_{0}(m=0)$	1	1	1	1
$L_{1}(m=1)$	1	i	-1	-i
$L_{2}(m=2)$	1	-1	1	-1
$L_{3}(m=3)$	1	-i	-1	i

Now consider the irreducible representations of D_{4}, determined in Q1. Find their characters, considered as a representation of \mathbb{Z}_{4}. Which ones are reducible, and which are irreducible? How do they relate to the above irreducible representations of \mathbb{Z}_{4} ?

