Homework \#1 (2014-2015), Answers
Q1: Regression and "cross-correlation analysis"
Consider the standard regression scenario described in the class notes, pages 1-2. That is, there are n observations, y_{1}, \ldots, y_{n}, and p regressors, where the typical regressor \vec{x}_{j} is a column $x_{1, j}, \ldots x_{n, j}$, and the set of p regressors forms a $n \times p$ matrix X, and we seek a set of p coefficients b_{1}, \ldots, b_{p}, the $p \times 1$ matrix B, for which $|Y-X B|^{2}$ is minimized.
Now let's assume that the regressors \vec{x}_{j} are orthonormal. For example, we're doing spatial receptive field analysis. Here $x_{i, j}$ corresponds to the luminance presented on the ith trial in pixel j, and we've designed our stimuli so that, over the entire stimulus sequence, $\sum_{i=1}^{N} x_{i, j} x_{i, k}=0$ if $j \neq k$, and $\sum_{i=1}^{N} x_{i, j} x_{i, j}=1$.
How does this simplify the computation of the regressors B ?
We have the formal solution $B=\left(X^{*} X\right)^{-1} X^{*} Y$. The assumptions of orthonormality, namely, $\sum_{i=1}^{N} x_{i, j} x_{i, k}=0$ if $j \neq k$, and $\sum_{i=1}^{N} x_{i, j} x_{i, j}=1$, mean that $\left(X^{*} X\right)_{j, k}=\left(X^{T} X\right)_{j, k}=\sum_{i} x_{i, j} x_{i, k}$. (Since the x^{\prime} s are all real, $X^{*}=X^{T}$.) So $X^{*} X$ is the identity matrix, and $B=\left(X^{*} X\right)^{-1} X^{*} Y=X^{*} Y$. That is, the model coefficients B can be computed by correlating the response sequence Y against the stimulus sequences X.

An extension of this argument leads to the "reverse correlation" procedure for determining the temporal aspects of receptive fields.

