Multivariate Methods

Homework #1 (2014-2015), Answers

Q1: Regression and "cross-correlation analysis"

Consider the standard regression scenario described in the class notes, pages 1-2. That is, there are n observations, y_1, \ldots, y_n , and p regressors, where the typical regressor \vec{x}_j is a column $x_{1,j}, \ldots, x_{n,j}$, and the set of p regressors forms a $n \times p$ matrix X, and we seek a set of p coefficients b_1, \ldots, b_p , the $p \times 1$ matrix B, for which $|Y - XB|^2$ is minimized.

Now let's assume that the regressors \vec{x}_j are orthonormal. For example, we're doing spatial receptive field analysis. Here $x_{i,j}$ corresponds to the luminance presented on the ith trial in pixel *j*, and we've designed our

stimuli so that, over the entire stimulus sequence, $\sum_{i=1}^{N} x_{i,j} x_{i,k} = 0$ if $j \neq k$, and $\sum_{i=1}^{N} x_{i,j} x_{i,j} = 1$. How does this simplify the computation of the regressors B?

We have the formal solution $B = (X^*X)^{-1}X^*Y$. The assumptions of orthonormality, namely, $\sum_{i=1}^{N} x_{i,j}x_{i,k} = 0$ if

 $j \neq k$, and $\sum_{i=1}^{N} x_{i,j} x_{i,j} = 1$, mean that $(X^*X)_{j,k} = (X^T X)_{j,k} = \sum_{i} x_{i,j} x_{i,k}$. (Since the x's are all real, $X^* = X^T$.)

So X^*X is the identity matrix, and $B = (X^*X)^{-1}X^*Y = X^*Y$. That is, the model coefficients *B* can be computed by correlating the response sequence *Y* against the stimulus sequences *X*.

An extension of this argument leads to the "reverse correlation" procedure for determining the temporal aspects of receptive fields.