Homework \#2 (2014-2015), Questions
Q1: A three-stimulus brain in a two-stimulus world
Consider a toy functional imaging experiment, in which the brain has 3 pixels, and there are two stimuli. Say that stimulus 1 causes an activation of +2 units in pixel 1, and -1 unit in pixels 2 and 3; say that stimulus 2 causes an activation of +2 units in pixel 2, and -1 unit in pixels 1 and 3 . So we have a 3×2 data matrix Y.
A. Compute its principal components, $Y=X B$, with the columns of X orthonormal, and the rows of B orthogonal (but not necessarily orthonormal).

Verify that $Y=X B$, where the columns of X orthonormal, and the rows of B orthogonal.

Q2. Rotation of principal components. Same setup as Q1. Let's see if we can find a simple way to unmix these components. Let $\vec{u}_{1}=\vec{x}_{1} \cos \theta+\vec{x}_{2} \sin \theta, \vec{u}_{2}=-\vec{x}_{1} \sin \theta+\vec{x}_{2} \cos \theta$. Since the \vec{u}_{i} are a non-singular linear combination of the \vec{x}_{i}, they necessarily also account for the data matrix Y. We might consider a transformation to the \vec{u}_{i} to be simpler if the coefficients in the \vec{u}_{i} are smaller. The \vec{u}_{i}, like the \vec{x}_{i}, constitute the columns of a 3×2 matrix, $U(\theta)$. Is there a rotation θ that minimizes the sum of the squares of these 6 quantities? If so, find it; if not, explain why and suggest alternative strategies.

