
Exam, 2014-2015 
 
Do a total of 30 points (more if you want, of course).  Show your work! 
 
Q1: 10 points (4 parts, 2 points each for the first two parts, 3 points each for the second two parts) 
Q2: 10 points (11 parts, 1 point each, max credit 10 points) 
Q3: 10 points (5 parts, 2 points each) 
Q4 :12 points (6 parts, 2 points each) 
 
Q1:  Constructing a group representation based on cosets.  
 
Let G be a finite group, and H a subgroup of G. Recall that the coset Hb is the set of all of the elements g of G 
that can be written in the form g h b=  , for some element h in H, and that the cosets constitute a partition of G 
into disjoint subsets. 
 
Now consider the free vector space W on the cosets:  that is, W be the vector space of functions from the cosets 

Hb to  . Since W is a free vector space, it has a natural inner product, 
cosets

, ( ) ( )
Hb

x y x Hb y Hb= å , 

For any function x in W and any element p of G, we define pQ , a member of ( , )Hom W W , as follows:  pQ  

takes x (a function on the cosets) to the ( )pQ x  (another function on the cosets) whose value at the coset Hb  is 

given by ( )( ) ( ) ( )pQ x Hb x Hbp= . 

 
A. Show that this is a group representation. 
B. What is its dimension (in terms of the sizes #( )G  of G, and #( )H  of H)? 
C. Suppose further that G is commutative.  What is the character of Q? 
D. (No longer supposing that G is commutative).  Under what circumstances is Q irreducible? 
 
Solutions 
This set-up generalizes the “regular representation” (it reduces to the regular representation when H is the 
identity subgroup), and the analysis proceeds along the same lines. 
 
A. To see that pQ  is unitary: 

( ) ( )
cosets cosets cosets

( ), ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,p p p p
Hb Hb Hc

Q x Q y Q x Hb Q y Hb x Hbp y Hbp x Hc y Hc x y= = = =å å å .   

 
The crucial observation is the third equality:  for a fixed group element p, if Hb ranges over all cosets, sampling 
each one exactly once, then so does Hbp.   To see this, note that if Hb p  and Hb p  overlap, then some 
h b p h b p    , from which it follows that h b h b    , and that  Hb  and Hb  overlap also; since the cosets are 
disjoint, if two overlap, they must be identical.  Formally, this is a change of variables from b to c bp= ; 

1b cp-=  if 1cp-  samples each coset once, then so does b. 
 

To see that pQ  is a representation – i.e., that p q pqQ Q Q= , we need to show that ( )( ) ( )p q pqQ Q x Q x=  by 

evaluating the left and right hand side at every coset Hb.  We do this just as in the analysis of the regular 

representation. On the left, say ( )qy Q x= , so ( )( ) ( ) ( ) ( )qy Hb Q x Hb x Hbq= = .  Then 

( )( ) ( ) ( ) ( )pQ y Hb y Hbp x Hbpq= = . On the right, ( )( ) ( ) ( )pqQ x Hb x Hbpq=  directly from the definition of Q.   



 
B. Since the cosets divide a group into disjoint subsets, there are #( ) / #( )G H  cosets.  This is the dimension of 
the free vector space, since the free vector space consists of all the functions on these cosets, and therefore is the 
dimension of the representation. 
 
For C and D: The character is defined by ( ) tr( )Q gg Qc = .  It is easiest to evaluate the trace using the basis for 

the free vector space W consisting of functions Hd  which assign a value of 1 to one coset Hd, and a value of 0 

to other cosets.  (This is also parallel to the situation for the regular representation, where we evaluate the trace 
in the free vector space on G, rather than in the free vector space on the cosets). In this basis, Q acts as a 
permutation matrix.  To see this:   ( ) ( )g Hd HdQ Hb Hbg  .  This evaluates to 1 if Hbg and Hd are the same 

coset, i.e., if Hb and 1Hdg   are the same coset.   So   1g Hd Hdg
Q    , i.e., an element of the basis set.  Since 

the trace is the sum of the diagonal element entries in the matrix that describes the transformation, the character 
( )Q gc  is the tally of the number of cosets Hd for which Hd  and 1Hdg   are identical. 

 
C.  For a commutative group, the cosets  1Hdg   and 1Hg d  are identical (since 1g   and d commute).   So if 

g H , gQ  maps every Hd  to itself , since 1 1Hdg Hg d Hd    (the last step because g H ).  That is, for 

g H , gQ , is the identity transformation. ,So for g H , ( ) tr( ) dim #( ) / #( )Q gg Q W G Hc = = = .  Conversely, 

if g H , then  1Hg d  and Hd  must be distinct cosets, (since if they overlapped, then for some h and h , we 

would have 1hg d h d   which would imply 1hg h   and that g H ).  So if g H , gQ  maps every Hd  to a 

different basis element, and therefore ( ) tr( ) 0Q gg Qc = = .  So in the case that G is commutative, 

( ) #( ) / #( )Q g G Hc =  for g H  and 0 otherwise. 

 
D.  As above, the character is always a non-negative integer – since it is the trace of a permutation matrix.  The 
trace formula for the number of common irreducible components of L and M times is 

1
( , ) ( ) ( )L M

g

d L M g g
G

c c= å . Take L Q  and M E , the trivial representation. ( ) 1E gc =  everywhere, and 

( ) 0Q g    throughout G, with  ( ) #( ) / #( ) 0Q e G H   .  So ( , ) 0d Q E  .  So Q must contain at least one copy 

of the trivial representation. So the only way that Q can be irreducible is if it is, itself, the trivial representation, 
which means that it has dimension 1, so #( ) #( )H G , so H G . 
   
Question 2. Permutation matrices and eigendecompositions  
 
Consider an n n  cyclic permutation matrix M, defined by , 1 1j jm    for 1 ( 1)j n   , ,1 1nm  , and otherwise 

zero.  Here, for 5n  : 

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

M

 
 
 
 
 
 
 
 

.   

 
A. Is M unitary? 
B. Is M self-adjoint? 
C. What are the eigenvalues of M? 
D. What are the eigenvectors of M? 



E.  Consider a matrix C, which is cyclic but with entries not necessarily drawn from {0,1}. (so it is not a 

permutation matrix).  Specifically, ,j k k jc f  , where k j  is interpreted mod n. For example, for 5n  , 

0 1 2 3 4

4 0 1 2 3

3 4 0 1 2

2 3 4 0 1

1 2 3 4 0

f f f f f

f f f f f

C f f f f f

f f f f f

f f f f f

 
 
 
 
 
 
 
 

. Is C unitary? 

F. Is C self-adjoint? 
G. Does C commute with M? 
H. What are the eigenvectors of C? 
I. What are the eigenvalues of C? 
J.  What are the eigenvalues of this matrix, which is a permutation matrix but not cyclic? 

0 1 0 0 0 0 0

0 0 1 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 1 0 0 0

P

 
 
 
 
   
 
 
 
 
 

 

K.  What can you say about the eigenvalues of any permutation matrix of size n n ? 
 
Solutions 
 
A. By direct calculation, 1TMM    ( * TM M  since M is real), so M is unitary. 
B. Except for 2n  , 2,1 1,2m m  so M is not self-adjoint. 

C and D.  Say 

1

2

1n

n

x

x

x

x

x


 
 
 
 
 
 
 
 

   is an eigenvector. Then 

2

3

1

n

x

x

Mx

x

x

 
 
 
 
 
 
 
 

  , and Mx x 
 means that 2 1x x ,  

2
3 2 1x x x   , …, 1

1 1
n

n nx x x  
  , and finally 1 1

n
nx x x   .  So 1n  , and 1x  is free to vary. That is, 

  is an nth root of unity. For any such  , i.e., for 
2 i

r
n

r e


  , the eigenvectors are given by 
2

2

1

1

r

r
r

n
r

n
r

x a











 
 
 
 

  
 
 
  
 




. 

E. Typically not, as being unitary *( )CC I  would require that 2

1

1
n

j
j

f


  (among other things). 

F. Typically not, as *C C  would require 1 1nf f   (among other things). 



G. Yes (by direct calculation):  MC CM .  Note that MC is a matrix similar in structure to M but now 1nf   is 

on the diagonal. 
H.  Since M and C commute, the eigenvectors for C are the eigenvectors for M.  

I. Choose 1a   in the above expression (part D) for rx


 and 
2 i

r
n

r e


  .  
2

2

1

1

r

r
r

n
r

n
r

Mx M











 
 
 
 

  
 
 
  
 




; the first entry of the 

product just be the first eigenvalue; by direct multiplication, this is 
21

0

in rj
n

j
j

f e



 .   

J. P is a block matrix 3

4

0

0

M
P

M

 
  
 

.  That is, it acts separately on a 3-dimensional and a 4-dimensional 

subspace, and in each of these subspaces, it is a cyclic permutation matrix of the sort defined in part A.  On the 
3-dimensional subspace, its eigenvalues are the same as those of M above with 3n  ; on the 4-dimesional 
subspace, its eigenvalues are the same as of M above with 4n  . 
 
K.  They will always be rth roots of unity for some  r n .  
 
Question 3. Transfer function and power spectrum in a simple physical system 

Say an output, ( )x t , is related to an input, ( )s t  by 
2

2

d x dx
m s kx c

dt dt
= - - .  That is, the output x  is the position 

of an object of  mass m that is subject to a sum of three forces: the input signal s,  a spring-like restoring force 

kx , and a frictional force  
dx

c
dt

- .  

A. Determine the transfer function that relates x  to s. 
 
B. Say s is white noise. What is the power spectrum of x? 
 
C and D. Under what circumstances does the power spectrum have a peak at a nonzero frequency? At what 
frequency is the peak? 
E. Describe what happens if 0c   (no friction). 
 
Solutions 
 
A. The relationship between ( )x t  and ( )s t  is linear and time-translation-invariant, so it preserves 

eigenfunctions of the time-translation operator, namely, the exponentials i te w .  So if ( ) i ts t e w= , then ( )x t  must 

be a multiple of ( )s t , i.e., ˆ( ) ( ) i tx t L e ww= .  Then ˆ( ) i tdx
i L e

dt
ww w=  and ( )

2
2 2

2
ˆ ˆ( ) ( )i t i td x

i L e L e
dt

w ww w w w= =- . 

Substituting for each of the terms in 
2

2

d x dx
m s kx c

dt dt
= - - : ( )2 ˆ ˆ ˆ( ) ( ) ( )i t i t i t i tm L e e kL e ic L ew w w ww w w w w- = - - . 

Solving for ˆ( )L w  yields ( )( )2ˆ( ) i t i tL m k ic e ew ww w w- + + = or, 
2

1ˆ( )L
m k ic

w
w w

=
- + +

.   



B. In general, the input and output power spectra of a linear system are related by 
2

( ) ( ) ( )X SP L P    .  

Taking  ( )SP K  , 
2

2

2

1
( ) ( )XP K L K

m k ic
 

 
 

  
 . 

This is 

   

2 2

2 2

2 2 4 2 2 22 2 2

1 1
( )

1 1

1 1

2

XP K
m k ic m k ic

K
m k ic m k ic

K K
m c mk km k c


   

   

  

            
            
   
    

          

. 

C and D. The power spectrum has a peak at a nonzero frequency when the denominator above has a minimum 
at a nonzero frequency.  The denominator is a quadratic in 2 , and in general, the quadratic 2Au Bu C   

(with 0A  ) has an extremum at 
2

B
u

A
  .  Here,   2A m  and 2 2B c mk  , so there is a minimum of the 

denominator (and a peak of the power spectrum) at 
2

2
2

2

2

mk c

m
 

 .  This is positive for 2c mk , so if  

2c mk , there is a peak in the power spectrum at a positive frequency. (If this quantity is negative, then there 

is no real 0   at which there is a peak).  The peak is at the frequency   
2

2

2

2

mk c

m
 
 . 

E. When 0c  , there is a frequency 
k

m
   at which ( )L   and ( )XP   are both infinite – i.e., at which an 

infinitesimal input will lead to an arbitrarily large response.  That is, there is a resonance. 
 
Question 4.  Coherence and network identification 
 
Say 1( )S t  and 2 ( )S t  are noise sources with power spectra 

1
( )SP   and 

2
( )SP  , not necessarily independent, 

which are connected to two observable outputs 1( )R t  and 2 ( )R t  by the following network,where ijL  are linear 

filters with transfer functions ( )ijL  . 

 

 
A. Find the power spectra 

1
( )RP   and 

2
( )RP   of the outputs in terms of the power spectra ( )

iSP   and cross-

spectrum 
1 2, ( )S SP   of the inputs. 

B. Find the cross-spectrum of the outputs. 
C and D. Same as A and B, but for N independent noise sources fully connected to N observable outputs, rather 
than two. 



E.  Define ( )S   as the “cross-spectral matrix” of S, i.e., the matrix whose elements are given by S  

,

( ),
( )

( ),
i

i j

S

ij
S S

P i j
S

P i j






  
, and similarly for R. Further define ( )L   as the matrix of transfer functions ( )ijL  . 

Write a concise expression for ( )S   in terms of ( )R   and  ( )L  . 
F. Now say we know that each of the noise inputs are independent, and have a flat power spectrum, specifically, 
that ( )S I  .  Can we deduce the matrix ( )L   from the matrix ( )R  ?  Why or why not? 
 
Solutions 
 
A and C (A is the same as C, but with 2N  ):  

First calculate Fourier estimates for the response ( )iR t : 
1

( ) ( ) ( )
N

i ik k
k

r L s  


  . 

Then, 

1 1

1 1

1 1 1 1

1 1
( ) lim ( ) ( ) lim ( ) ( ) ( ) ( )

1
lim ( ) ( ) ( ) ( )

1
( ) ( ) lim ( ) ( )

i

N N

R T i i T ik k im m
k m

N N

T ik im k m
k m

N N N N

ik im T k m
k m k m

P r r L s L s
T T

L L s s
T

L L s s
T

w w w w w w w

w w w w

w w w w

¥ ¥
= =

¥
= =

¥
= = = =

æ öæ ö÷ ÷ç ç= = ÷ ÷ç ç÷ ÷ç ç÷ ÷è øè ø

=

=

å å

åå

åå åå

   

 

 

, 

where the last step follows because the L’s are fixed values, unaffected by the limiting process. 
So  

1 1 1 1

,
1 1

1
( ) ( ) ( ) lim ( ) ( )

( ) ( ) ( )

i

k m

N N N N

R ik im T k m
k m k m

N N

ik im S S
k m

P L L s s
T

L L P

w w w w w

w w w

¥
= = = =

= =

=

=

åå åå

åå

 
, where we have used the notational convention that 

, ( ) ( )
k m kS S SP Pw w=  when k m  (this is consistent because the cross-spectrum of a signal with itself is its 

spectrum). 
 
B and D. 

,
1 1

1 1

1 1 1 1

1 1
( ) lim ( ) ( ) lim ( ) ( ) ( ) ( )

1
lim ( ) ( ) ( ) ( )

1
( ) ( ) lim ( ) ( )

( )

i j

N N

R R T i j T ik k jm m
k m

N N

T ik jm k m
k m

N N N N

ik jm T k m
k m k m

ik j

P r r L s L s
T T

L L s s
T

L L s s
T

L L

w w w w w w w

w w w w

w w w w

w

¥ ¥
= =

¥
= =

¥
= = = =

æ öæ ö÷ ÷ç ç= = ÷ ÷ç ç÷ ÷ç ç÷ ÷è øè ø

=

=

=

å å

åå

åå åå

   

 

 

1 1

( ) ( )
k m

N N

m S S
k m

Pw w
= =
åå

. 

 

E. From D, ( ) ( )*
,

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
i j k m k m

N N N N

R R ik jm S S S Sik mj
k m k m

P L L P L L Pw w w w w w w
= = = =

= =åå åå   , because the adjoint is 

the complex conjugate of the transpose. 
So  



( ) ( ) ( ) ( )*

1 1

( ) ( ) ( ) ( )
N N

ij kmik mj
k m

R L L Sw w w w
= =

=åå   , and ( )*
( ) ( ) ( ) ( )R L S Lw w w w=   . 

F. From E, for independent, white-noise inputs of unit power, ( )S I  , and ( )*
( ) ( ) ( )R L Lw w w=   .  

One cannot deduce ( )L   from ( )R  . The simplest reason is that even for N=1 (where there is no issue of 

channels mixing), this cannot be done.  Here, ( )* 2
( ) ( ) ( ) ( )R L L Lw w w w= =   .  The reason that L cannot be 

determined is that there are non-trivial filters with 
2

( ) 1U w = : the pure delay, and also, the example of 

LSBB14155b, homework question 2.  Replacing ( )L w  by ( ) ( )L Uw w  , i.e., convolving L with U,  does not 

change 
2 2

( ) ( ) ( ) ( )R L L Uw w w w= =   . 

 
For 1N  , there are further reasons that L cannot be determined, related to the mixing of signals. If ( )U   is 

any unitary matrix, then (by definition)  *( ) ( )U U I   , so 

( ) ( ) ( ) ( )* * * *
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )R L L L U U L L U L Uw w w w w w w w w w w= = =          .  That is, following L by a network 

that mixes the signals according to a unitary matrix does not change the observed cross-spectral matrix R. 


