Exam, 2014-2015

Do a total of 30 points (more if you want, of course). Show your work!
Q1: 10 points (4 parts, 2 points each for the first two parts, 3 points each for the second two parts)
Q2: 10 points (11 parts, 1 point each, max credit 10 points)
Q3: 10 points (5 parts, 2 points each)
Q4 :12 points (6 parts, 2 points each)

Q1: Constructing a group representation based on cosets.

Let G be a finite group, and H a subgroup of G. Recall that the coset $H b$ is the set of all of the elements g of G that can be written in the form $g=h \circ b$, for some element h in H, and that the cosets constitute a partition of G into disjoint subsets.

Now consider the free vector space W on the cosets: that is, W be the vector space of functions from the cosets $H b$ to \mathbb{C}. Since W is a free vector space, it has a natural inner product, $\langle x, y\rangle=\sum_{\text {cosets } H b} x(H b) \overline{y(H b)}$
For any function x in W and any element p of G, we define Q_{p}, a member of $\operatorname{Hom}(W, W)$, as follows: Q_{p} takes x (a function on the cosets) to the $Q_{p}(x)$ (another function on the cosets) whose value at the coset $H b$ is given by $\left(Q_{p}(x)\right)(H b)=x(H b p)$.
A. Show that this is a group representation.
B. What is its dimension (in terms of the sizes $\#(G)$ of G, and $\#(H)$ of H)?
C. Suppose further that G is commutative. What is the character of Q ?
D. (No longer supposing that G is commutative). Under what circumstances is Q irreducible?

Question 2. Permutation matrices and eigendecompositions

Consider an $n \times n$ cyclic permutation matrix M, defined by $m_{j, j+1}=1$ for $1 \leq j \leq(n-1), m_{n, 1}=1$, and otherwise
zero. Here, for $n=5: M=\left(\begin{array}{ccccc}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0\end{array}\right)$.
A. Is M unitary?
B. Is M self-adjoint?
C. What are the eigenvalues of M ?
D. What are the eigenvectors of M ?
E. Consider a matrix C, which is cyclic but with entries not necessarily drawn from $\{0,1\}$. (so it is not a permutation matrix). Specifically, $c_{j, k}=f_{k-j}$, where $k-j$ is interpreted mod n. For example, for $n=5$, $C=\left(\begin{array}{lllll}f_{0} & f_{1} & f_{2} & f_{3} & f_{4} \\ f_{4} & f_{0} & f_{1} & f_{2} & f_{3} \\ f_{3} & f_{4} & f_{0} & f_{1} & f_{2} \\ f_{2} & f_{3} & f_{4} & f_{0} & f_{1} \\ f_{1} & f_{2} & f_{3} & f_{4} & f_{0}\end{array}\right)$. Is C unitary?
F. Is C self-adjoint?
G. Does C commute with M ?
H. What are the eigenvectors of C ?
I. What are the eigenvalues of C ?
J. What are the eigenvalues of this matrix, which is a permutation matrix but not cyclic?
$P=\left(\begin{array}{lllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$
K. What can you say about the eigenvalues of any permutation matrix of size $n \times n$?

Question 3. Transfer function and power spectrum in a simple physical system

Say an output, $x(t)$, is related to an input, $s(t)$ by $m \frac{d^{2} x}{d t^{2}}=s-k x-c \frac{d x}{d t}$. That is, the output x is the position of an object of mass m that is subject to a sum of three forces: the input signal s, a spring-like restoring force $-k x$, and a frictional force $-c \frac{d x}{d t}$.
A. Determine the transfer function that relates x to s.
B. Say s is white noise. What is the power spectrum of x ?

C and D. Under what circumstances does the power spectrum have a peak at a nonzero frequency? At what frequency is the peak?
E. Describe what happens if $c=0$ (no friction).

Question 4. Coherence and network identification

Say $S_{1}(t)$ and $S_{2}(t)$ are noise sources with power spectra $P_{S_{1}}(\omega)$ and $P_{S_{2}}(\omega)$, not necessarily independent, which are connected to two observable outputs $R_{1}(t)$ and $R_{2}(t)$ by the following network, where $L_{i j}$ are linear filters with transfer functions $\tilde{L}_{i j}(\omega)$.

A. Find the power spectra $P_{R_{1}}(\omega)$ and $P_{R_{2}}(\omega)$ of the outputs in terms of the power spectra $P_{S_{i}}(\omega)$ and crossspectrum $P_{S_{1}, S_{2}}(\omega)$ of the inputs.
B. Find the cross-spectrum of the outputs.

C and D. Same as A and B, but for N independent noise sources fully connected to N observable outputs, rather than two.
E. Define $S(\omega)$ as the "cross-spectral matrix" of S, i.e., the matrix whose elements are given by S $S_{i j}(\omega)=\left\{\begin{array}{c}P_{S_{i}}(\omega), i=j \\ P_{S_{i}, S_{j}}(\omega), i \neq j\end{array}\right.$, and similarly for R. Further define $\tilde{L}(\omega)$ as the matrix of transfer functions $\tilde{L}_{i j}(\omega)$.
Write a concise expression for $S(\omega)$ in terms of $R(\omega)$ and $\tilde{L}(\omega)$.
F. Now say we know that each of the noise inputs are independent, and have a flat power spectrum, specifically, that $S(\omega)=I$. Can we deduce the matrix $\tilde{L}(\omega)$ from the matrix $R(\omega)$? Why or why not?

