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General Themes 
 

 Basic mathematical approaches to data and models are successful because of 
fundamental principles, not because of accidents.  What are those principles? 

 Use appropriate mathematical objects to represent data and models: 
Measurements in the lab are discrete and finite, but mathematical concepts and 
models typically involve continua and infinities.  So the mathematical constructs 
should allow for a smooth transition between large but finite and infinite, and a 
smooth transition between sampled and continuous 

 Find natural coordinates based on the intrinsic features and symmetries of the 
problem.  These will typically lead to more incisive analyses, and descriptions of 
the data that suggest generalization, not the specific features of the experiment, 
measuring devices, etc.  

 We will make counter-factual assumptions (e.g., “linearity”).  We make them 
because they are extremely useful starting points, and because there are natural 
ways to relax them. There seems to be a meta- principle:  principled methods 
based on broad assumptions that are known to be only approximately correct 
work much better than non-principled methods based on ad hoc assumptions.  
Also, symmetries, even if only approximate, are often very helpful.  

What are the challenges in this material? 
 Objects play multiple roles, and simple examples may not reveal what is generic 

o numbers and transformations: on a line, numbers act both as positions and 
transformations.  A number x can also be interpreted as the transformation 

xA , “add x”.  Adding two numbers, x and y,  can be thought of as applying 

the transformation xA   to y, i.e., ( )xA y y x  .  But it can also be thought 

as combining two transformations:  first apply xA  and then apply yA – the 

sequence of transformations is the transformation x yA  , i.e., for any 

number z,  ( ) ( ( ))x y y xA z A A z  .  This seems like hair-splitting until one 

considers the transformations of the surface of the sphere – here, there’s 
clearly a distinction between points on a sphere, and rotations of the 
sphere.  To specify a rotation, you have to specify a pair of opposite points 
(a diameter of the sphere), and a rotation angle; this is quite distinct from 
specifying two a single point on a sphere.  

o the two sides of a dot-product: Consider a signal and a filter. Both are 
functions of time:  the signal is ( )s t , the filter is ( )f t , and the action of 
the filter on the signal produces  a value at each instant in time.  At time 0, 

we can write this as 
0

( ) ( )s f f s d  


  .  (There’s a sign convention 

here – positive arguments for f refer to the impact of s at previous values 
of time). It appears that s and f play the same role, but in fact they are 
different kinds of objects.  One clue that this is the case is that they have 
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different units.  For example, if you change the unit of measure from volts 
to microvolts, you increase the numbers that describe s by a factor of 106.    
But for f, we describe the gain as the size of the output for a unit input.  So 
the gain decreases by a factor of 106, as the gain goes from units of “per 
volt” to “per microvolt”.  Similar considerations apply to the distinction 
between an image, and a spatial activity pattern – but now the coordinates 
are the pixels.  Or to lights, and chromatic mechanisms – the coordinates 
correspond to the three kinds of photoreceptors.      

 As the above examples show, one needs to be familiar with examples so that one 
can use them to help understand the abstractions 

Coordinate systems 
 
The typical objects we measure are intrinsically multivariate, and the “intuitively 
obvious” coordinate systems we use to describe them may not be the most natural ones.  
It might seem natural to describe a time series s in terms of its samples at a series of time 
steps (as above).  But this has some undesirable consequences.  First, if we change the 
discretization (which is something that is arbitrarily determined by our instrumentation) 
we drastically change the representation of s – we change its dimensionality.   
 
Second, we always record s through some kind of filter, again determined by our 
instrumentation. This filter –considered as operating in discrete time – is a linear 
transformation that mixes the coordinates of s.  In continuous time, 

0

( ) ( ) ( )observed underlyings t f s t d  


  .  Discretizing time in steps of   so that 

( )js s j   , and similarly for f,  this is equivalent to 
0

observed underlying
j k j k

k

s f s





   .  So the 

instrumentation  filter mixes the coordinates of s.  There’s no particular reason that the 
ones that the instrumentation hands us is the best one to use.  Wouldn’t it be nice to use a 
coordinate system in which filters don’t mix the coordinates?   
 
Note also that we can rewrite the mixing as 

,

j j
observed underlying underlying
j j m m j m m

m m

s f s F s 
 

      (with m j k   and ,j m j mF f  ).  So 

the filter f corresponds to a matrix F whose elements are constant  on diagonals. Now it’s 
also obvious that filters and signals are different objects:  signals are vectors, while filters 
are a special kind of linear transformation on the vectors.  
  

Why is the field of statistics still an active one? 
 
It’s obvious that one needs statistics: to describe experimental data in a compact way, to 
compare datasets, to ask whether data are consistent with a model.  But why is this a hard 
problem (or at least, why are people still making advances)?  We will be focusing on 
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multivariate data (e.g., time series, images), but the reason that “statistics” is nontrivial 
emerges even when we look at univariate data.  Of course multivariate data does not 
make things better. 

Toy example: estimating the mean 
 
To set it up: we suppose that there is a collection of possible outcomes x (an “ensemble” 
 , or a set of possible measurements associated with their probabilities). We would like 
to estimate the true mean  of the values x in  , which we write as ( )E x  .   
 
 

( )E x  means the expected value of x , which we may also write as x


, to emphasize 

the dependence on the ensemble  .  For discrete ensembles, ( )
x

x xp x




  , where 

( )p x  is the probability of drawing x  from  .  For continuous ensembles, 

( )x xp x dx




  , where ( )p x x  is the probability of drawing a value between x  and 

x x   from  . 
 
Clearly if we could sample all of  , the problem would be simple:  we’d just apply one 
of the above formulae to our exhaustive sample, to deterione its average.  But  we only 
have a finite sample, not all of  . 
 
We now draw N  values from  , say 1x , …, Nx .  Our problem is to craft an “estimator” 

function, say, 1ˆ ˆ ( ,..., )Nx x  , to provide an estimate of  .  The obvious choice is the 

sample mean.  This is also known as the  “plug-in” estimator, 
1

1
ˆ

N

plugin i
i

x
N




  , since it is 

“plugging in” the measured values into the formula for the mean.  But it is not the only 
choice. 
 

Silly choices of estimators 
There are some clearly silly choices:  
(a) a fixed, a priori guess, independent of the data 
(b) throw out the even-numbered measurements, and take the sample mean of the rest,  
(c) take the sample mean, and add a fixed number (say, 7),  
(d) take the sample mean, and add a number that depends on N , say, 1/ N , 
(e) choose one value from the data. 
 
Why do we know that these choices are silly? Conversely, what properties do we want an 
estimator to have? 

Desirable properties of an estimator 
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A good estimator should be unbiased (i.e., it should not systematically over- or under-
estimate), and should converge to the correct value as one has more and more data.   That 
is, as N  grows, we would like the expected value of the estimator. ˆ( )E   to converge to 
the correct answer,  .  This has two components:  “bias” and “consistency.” 
An unbiased estimator gives the correct value, on average, when applied to a finite 
dataset.  That is, the bias is the difference between the expected value of the estimator for 
a sample size N , and the true value,  ˆE   , where the expectation is taken over all 

datasets of size N .  
 
A consistent estimator is one that eventually converges to the correct answer.  One way to 

formalize this is   2
ˆlim ( ) 0

N
E E  


  : i.e., the mean-squared scatter of the estimator 

around the correct value eventually goes to 0 as more data are accumulated. 
Occasionally, one is interested in alternative definitions of consistency – for example, 
bounding the largest possible error, rather than bounding the expected mean-squared 
error.  Or bounding the largest possible error that can occur with probability > 0. 
 
Both the lack-of-bias and the consistency conditions can be phrased in stricter forms, in 
which the speed of approach to 0 is specified, typically /K N  for some constant K .  
More efficient estimators converge more rapidly, i.e., have a smaller K. One can’t 
typically expect to do better than a bias that decreases as /K N , for some K. 
 
How can one evaluate (theoretically) the performance of a statistic?  One does a thought 
experiment in which one draws multiple sets of N  values from  , calculates the 
estimator of interest, and compares it with the true value. At a second level, one could 
postulate a family of ensembles, say ( ) , one for each value of an unknown parameter 

  (or, more typically, a set of parameters k ), and then see how sensitive the above 

analysis is to knowing  .  That is, how strongly does the merit of the statistic depend on 
knowing, precisely, the form of the distribution? Sometimes one can do this analytically.   
 
One can imagine a situation in which an estimator performs wonderfully for a particular 
family of ensembles, but performs terribly for ensembles that are not in this family – i.e., 
an estimator that is highly sensitive to model error. 

Back to the toy example 
 
For Gaussian ensembles, the plug-in estimator for the mean is unbiased, and consistent, 
and it is the most efficient estimator ( K  is as small as possible.)  But the Gaussian 
ensemble is the only ensemble for which this is true.  For ensembles that are not 
Gaussian, there is always a more efficient estimator of the mean, i.e., one for which the 
convergence to the true value is faster or more certain.  The plug-in estimator remains 
useful because (a) it is unbiased, (b) it is consistent, (c) it is simple, (d) its properties are 
simple to calculate, (e) often the improvements conferred by other estimators are fragile, 
i.e., they are highly sensitive to the assumed shape of the distribution  . 
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Here is an important, practical example of a situation in which the plug-in estimator for 
the mean can be improved on: 
 
Say the ensemble   is known to have the following structure:  most of the values come 
from a Gaussian distribution (mean and variance unknown), but a small fraction, say  , 
of the values are corrupted by a large measurement error.  That is,   of the values consist 
of samples from the underlying Gaussian, to which a large quantity M  is either added or 
subtracted – or even, that the data are replaced by a large quantity M . (Think of this as 
modeling a typographical error, or a rare but very large artifact.) Now, construct an 
estimator in two steps. First, throw out some fraction f   of the extreme values. Then, 
take the mean of the remaining values.   This is known as a “trimmed mean” estimator. 
 
Since the first step gets rid of much of the variability, the resulting estimator converges 
faster than the plug-in estimator. If, say, we choose 2f  , then nearly all of the time, 
all outliers will have been eliminated. The trimmed mean is an example of a “robust” 
estimator (one that is relatively insensitive to outliers).  The median is the limiting case of 
the trimmed mean (discard all but one of the measurements as extreme). 
 
In this example,   has heavy tails (platykurtotic).  You can think of other examples in 
which the heavy tail extends in only one direction (  is  skewed), or has known shape, 
or even, in which   has light tails (leptokurtotic).  These lead to other estimators that all 
do better than the plug-in estimator, each in its own domain.  The trimmed mean 
estimator is worse than the plug-in estimator for a Gaussian, but not much worse.  So it is 
often a good choice.  And one often does it even without thinking (“let’s throw out that 
experiment, it’s an outlier.”) 
 
Note that the above example is extremely simple in that we are only considering 
univariate quantities.  Additionally, we are attempting to estimate a quantity – the mean – 
for which the plug-in estimator is unbiased and consistent. Neither of these are typically 
the case – for most statistics, even for Gaussian ensembles, the plug-in estimator is biased 
(for example, the sample variance).  The plug-in estimator for the variance is 

 21
ˆi pluginx

N
 , but this is biased; an unbiased estimator is  21

ˆ
1 i pluginx

N


  . 

 
In general, there is usually a tradeoff between bias and consistency (i.e., you can optimize 
the estimator for one, or for the other, but not for both.) 
 
In sum, one reason that statistics is not trivial is that for estimators, one does not have 
“one size fits all.” 
 
Another factor is that computational burden is, in fact, relevant.  Prior to computers, 
usable statistics nearly always were those that one could determine confidence limits, etc. 
analytically (Gaussian, Poisson).  Now more computationally-intensive approaches are 
practical – e.g., resampling approaches such as the bootstrap and the jackknife.  But 
computational practicality remains a severe consideration, and resampling approaches are 
not foolproof. 
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As a rule of thumb, for estimators that are simple (such as a plug-in estimator), it is easier 
to determine their sensitivity to the choice of the ensemble, and this sensitivity is usually 
less severe than for a more complex estimator. 
 

The Bayesian framework 
 
This is a brief introduction to a general approach to create principled estimators, with the 
algebra worked out in more detail than in class. 
 
The idea is that we postulate that there are a family ( )  of plausible distributions, each 
with an assumed a priori probability ( )p  , and we want to use our observations X to 
modify these probabilities to some ( | )p X .  We can then use the value   that 
maximizes ( | )p X  to determine the most likely distribution ( ) , and from this 

distribution ( )ML , determine the statistic of interest, say the mean [ ( )]ML    .  

This is the “maximum likelihood estimator.”  Or, we could determine a weighted 

estimate, [ ( )] ( | )p X d    , which weights the true mean of each ensemble ( )  

by the a posteriori probability of that ensemble.  (We can even determine confidence 
limits in this fashion.) 
 
The basic tool is Bayes’ rule: 

 
( | ) ( )

( | )
( )

p X p
p X

p X

   . 

The  most important term is ( | )p X  , the probability that the ensemble  ( )  would 
yield the observations X.  We can compute this if we have a clear hypothesis about 

( ) .  The denominator is the probability of the observations X.  We don’t know this, 
but it (by definition) is independent of  .  The final term is the a priori probability 

( )p  .  Usually, we set this to a constant k independent of   (an “uninformative prior”), 
indicating that we have no prior reason to favor one value of   over another – but we 
could also restrict it to some range, or have it not flat. Note that there’s a formal problem 

if we allow   to range over ( , )  , as we can’t normalize it --  kd



  is undefined.  

But since we only care about the relative sizes of ( | )p X , we can ignore this – and be 
content with computing the relative probabilities (likelihoods) of different values of  :  
 ( | ) ( | )L X p X  .   
Since ( | )L X  and ( | )p X  are proportional, the value of   that maximizes  L yields 
the maximum-likelihood estimator.  In principle, the full Bayesian estimator 
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[ ( )] ( | )p X d     can be also be computed from the likelihood, provided we can 

normalize L: 
[ ( )] ( | )

[ ( )] ( | )
( | )

L X d
p X d

L X d

   
   

 


   

. 

 
Now let’s implement this for a flat prior, and a set of ensembles ( )  that are Gaussians 

with mean    and variance 2 .   The probability that a value drawn from ( )  is 

between x and x x   given by 
2 2( ) /21

( | )
2

xp x e x 


   .  So the probability that a 

sequence X with of n values, with first value between x1 and 1 1x x  , second value 

between x2 and 2 2x x  , etc., is drawn from ( )  is given by  

2 22 2 2 2
1 1

1 2

( ) /2( ) /2 ( ) /2

( | ) ( | ) ( | ) ... ( | )

1 1 1

2 2 2
n

n

xx x

p X p x p x p x

e x e x e x    

   

  
    

  

             
    


. 

This is 

 2 2 2 2 2 2
1 2

2
2

1

( ) /2 ( ) /2 ( ) /2

1
( )

2

( | )
2

2

n

n

k
k

n

x x x

n x

x
p X e

x
e

     










      

 

   
 

   
 



 

 
Finding the value of   that maximizes this is equivalent to finding the value of   that 

minimizes the sum in the exponent, 2

1

( )
n

k
k

S x 


  .  This is a quadratic function of  , 

   

2 2

1 1

2
n n

k k
k k

S n x x 
 

    .  We find this minimum by setting 0
dS

d
 : 

1

2 2
n

k
k

dS
n x

d


 

   .  This is 0 when 
1

/
n

k
k

x n


   
 
 , i.e., the plug-in estimator. 

 
So:  for an assumed Gaussian ensemble and a flat prior, the Bayesian maximum 
likelihood estimator for the mean is the plug-in estimator. 
 
  
Two comments.  Note that the fact that the distribution had an exponential form was very 
helpful –the distribution ( | )p X   is generically a product, with one term for each sample 
(since the samples are independent), and, since the distribution had an exponential form, 
the exponent in this product was a sum of terms. 
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Second, note that the value of β that maximized ( | )p X   did not depend on the assumed 
variance. This is, unfortunately, not generic – typically, the estimated value of one 
statistic depends on other model parameters – so-called “nuisance parameters” – a form 
of model-dependence. 
 

A simple situation in which it’s not obvious how to construct a 
good estimator 
 
Say that you know that the ensemble   contains only a finite number of different values, 
and you want to estimate the number of different values. What can you do with a finite 
sample?  Obviously you know that the number of different values in   is no less than the 
number of different values in your sample.  But it might be larger, and there’s no 
reasonable way of estimating how much larger it can be unless you know something 
about the distribution of probabilities in   -- especially the distribution of the very low 
probabilities.  With a model of this, you can develop a more sophisticated estimator, but 
only if you can believe the model. 
 
This example indicates the basic difficulty that confronts estimating “information” from 
experimental data.   If we tried to use a Bayesian approach, we’d get an estimator, but the 
estimator would be model-dependent. 

Optional homework 
 
(answers at the end of this document) 
 
Q1. Consider the above “silly” estimators for the mean.  Which are unbiased?  Which are 
consistent? 
 
Q2. Construct a class of distributions for which the following estimator of the mean is 
unbiased, and also more efficient than the plug-in estimator: choose the highest and 
lowest values of the observations ix , and take their mean.  That is, 

    1
ˆ min max

2 i ix x   .  This is a kind of opposite strategy to the trimmed mean.  

Justify your claim (analytically or via simulation). 

A few principles 
 
We want to be able to describe our data in a way that has meaning to others. 
 
Some units are more natural than others (time: seconds rather than bins, space: cm (or 
deg) rather than pixels. 
 
Images are obviously multivariate, but so are time series. 
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Often the origin is arbitrary (e.g., time). 
 
With multidimensional datasets, it is even more of an issue: what direction should the 
axes point?  Is there a grounded notion of “orthogonal” axes?  Often at first glance there 
might seem to be:  values at each pixel, or samples at each point in time.  But when one 
looks at the biology or physics, one recognizes that each sample (say, at a specific pixel 
or time point) reflects underlying “causes” at nearby locations or times as well  (blur, 
filtering). So there is no strong reason that the obvious coordinates (the samples) are the 
natural coordinates.  Blurring and filtering amount to linear transformations on the data; 
these are inevitable, so we might as well recognize this at the outset. 
 
This leads to notions of: 

 natural coordinates (e.g., Fourier analysis) 
 data-driven coordinates (e.g., principal components analysis) 
 coordinate-free descriptions (e.g., information theory) 

 
And this (especially the notion of natural coordinates) leads us to focus on symmetries of 
the system.  Translation in time is the paradigm. 
 
Symmetries are often only approximate.  But it is usually better to use a principled 
approach that is approximate, than an unprincipled one.  
 

Plans and options 
 
Symmetry in the abstract (group theory) 
Multivariate measurements in the abstract (vector spaces and their symmetries) 
Implications of symmetry of the independent variable (how groups act on vector spaces)  
Natural coordinates 
Fourier analysis 

linear systems, filters  
noise and variability 

Intrinsic symmetries of a vector space, and data-driven coordinates 
 Principal components analysis 

Independent components analysis 
Entropy, information, and data analysis 
Graph-theoretic approaches 
Point processes 
 

Answers to optional homework 
 
Q1. Silly estimators for the mean: which are unbiased, which are consistent? 
 
(a) a fixed, a priori guess, independent of the data: biased,  inconsistent 
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(b) throw out even-numbered measurements, and take the sample mean of the rest: 
unbiased, consistent (but inefficient) 
(c) sample mean, plus a fixed number: biased, inconsistent 
(d) sample mean plus 1/ N : biased, consistent (but inefficient) 
(e) choose one value from the data:  unbiased, inconsistent (no improvement as the 
amount of data increases) 
 
Q2. Construct a class of distributions for which the following estimator of the mean is 
unbiased, and also more efficient than the plug-in estimator: choose the highest and 
lowest values of the observations ix , and take their mean.  That is, 

    1
ˆ min max

2 i ix x   .  This is a kind of opposite strategy to the trimmed mean.  

Justify your claim (analytically or via simulation). 
 
Answer:  Consider the class of “binary” distributions, i.e., those that contain only two 
values, 0a  and 1a  (with 0 1a a ), each of which is drawn with a probability of 0.5. So the 

true mean is 0 1

2

a a 
 . Most of the time, after a large number of draws N, the sample 

minimum will be 0a  and the sample maximum will be 1a , so the estimator 

    1
ˆ min max

2 i ix x    will be exact. To see how fast this estimator converges to the 

true mean, we note that the sample minimum and maximum will be accurate after N 
except for the fraction of trials in which the same value is drawn on each sample.  This 
happens 12 / 2 1/ 2N N  of the time, since it requires that all of the 1N   draws beyond 
the first draw are matched to the first draw.  So this estimator converges exponentially.  
Note that the mean-squared error of standard “plug-in” estimator decreases only like 
1/ N .  
 
Note also that if we applied this estimator to a distribution with tails, such as a Gaussian, 
it would be inconsistent – and in fact it would get worse and worse as we collected more 
data. 


