Linear Systems, Black Boxes, and Beyond
Homework \#1 (2016-2017), Answers
Q1: Cross-spectra and coherences: one input in common and no added noise
Setup: one signal $s(t)$ provides an input to two linear filters X and Y, with transfer functions $\tilde{X}(\omega)$ and $\tilde{Y}(\omega)$, and that $x(t)$ and $y(t)$ are their outputs. Assume $s(t)$ has the power spectrum $P_{s}(\omega)$.

A) Calculate the power spectra $P_{X}(\omega)$ of $x(t), P_{Y}(\omega)$ of $y(t)$, and $P_{X+Y}(\omega)$ of their sum, and demonstrate that $P_{X+Y}(\omega) \neq P_{Y}(\omega)+P_{Y}(\omega)$.
$P_{X}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{x}(\omega) \overline{\tilde{x}(\omega)}\rangle$, and $\tilde{x}(\omega)=\tilde{X}(\omega) \tilde{s}(\omega)$, so
$P_{X}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{X}(\omega) \tilde{s}(\omega) \overline{\tilde{X}(\omega) \tilde{s}(\omega)}\rangle=\tilde{X}(\omega) \overline{\tilde{X}(\omega)} \lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{s}(\omega) \overline{\tilde{s}(\omega)}\rangle=|\tilde{X}(\omega)|^{2} P_{S}(\omega)$.
Similarly, $P_{Y}(\omega)=|\tilde{Y}(\omega)|^{2} P_{S}(\omega)$.
For the summed signal,

$$
\begin{aligned}
& P_{X+Y}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\langle(\tilde{X}(\omega)+\tilde{Y}(\omega)) \tilde{s}(\omega) \overline{(\tilde{X}(\omega)+\tilde{Y}(\omega)) \tilde{s}(\omega)}\rangle \\
& =(\tilde{X}(\omega)+\tilde{Y}(\omega)) \overline{(\tilde{X}(\omega)+\tilde{Y}(\omega))} P_{S}(\omega) \\
& =(\tilde{X}(\omega) \bar{X}(\omega)+\tilde{X}(\omega) \tilde{Y}(\omega)+\tilde{Y}(\omega) \tilde{X}(\omega)+\tilde{Y}(\omega) \tilde{Y}(\omega)) P_{S}(\omega) \\
& =\left(|\tilde{X}(\omega)|^{2}+|\tilde{Y}(\omega)|^{2}+\tilde{X}(\omega) \overline{\tilde{Y}(\omega)}+\tilde{Y}(\omega) \overline{\tilde{X}(\omega)}\right) P_{S}(\omega)
\end{aligned} .
$$

Combining the above, $P_{X+Y}(\omega)-P_{X}(\omega)-P_{Y}(\omega)=(\tilde{X}(\omega) \overline{\tilde{Y}}(\omega)+\tilde{Y}(\omega) \bar{X}(\omega)) P_{S}(\omega)$.
B) Define the cross-spectrum of $x(t)$ and $y(t)$ as $P_{X, Y}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{x}(\omega) \overline{\tilde{y}(\omega)}\rangle$. Write an expression for $P_{X, Y}(\omega), P_{X, S}(\omega)$, and $P_{Y, S}(\omega)$ in terms of $\tilde{X}(\omega), \tilde{Y}(\omega)$, and $P_{S}(\omega)$.

Using $\tilde{x}(\omega)=\tilde{X}(\omega) \tilde{s}(\omega)$ and $\tilde{y}(\omega)=\tilde{Y}(\omega) \tilde{s}(\omega)$,
$P_{X, Y}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{x}(\omega) \overline{\tilde{y}(\omega)}\rangle=\lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{X}(\omega) \tilde{s}(\omega) \bar{Y}(\omega) \tilde{s}(\omega)\rangle$
$=\tilde{X}(\omega) \overline{\tilde{Y}(\omega)} \lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{s}(\omega) \overline{\tilde{s}(\omega)}\rangle=\tilde{X}(\omega) \overline{\tilde{Y}(\omega)} P_{S}(\omega)$
Similarly,
$P_{X, S}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{x}(\omega) \overline{\tilde{s}(\omega)}\rangle=\lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{X}(\omega) \tilde{s}(\omega) \overline{\tilde{s}(\omega)}\rangle=\tilde{X}(\omega) \lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{s}(\omega) \overline{\tilde{s}(\omega)}\rangle=\tilde{X}(\omega) P_{S}(\omega)$
and

$$
P_{Y, S}(\omega)=\tilde{Y}(\omega) P_{S}(\omega) .
$$

C) Write an expression for $P_{X+Y}(\omega)$ in terms of $P_{X, Y}(\omega), P_{X}(\omega)$ and $P_{Y}(\omega)$.

From part A, $P_{X+Y}(\omega)=\left(|\tilde{X}(\omega)|^{2}+|\tilde{Y}(\omega)|^{2}+\tilde{X}(\omega) \overline{\tilde{Y}(\omega)}+\tilde{Y}(\omega) \bar{X}(\omega) \mid P_{S}(\omega)\right.$. From Part B, $P_{X, Y}(\omega)=\tilde{X}(\omega) \overline{\tilde{Y}}(\omega) P_{S}(\omega)$. So $P_{X+Y}(\omega)=\left(|\tilde{X}(\omega)|^{2}+|\tilde{Y}(\omega)|^{2}\right) P_{S}(\omega)+P_{X, Y}(\omega)+\overline{P_{X, Y}(\omega)}$.
D) Define the coherence of $x(t)$ and $y(t)$ as $C_{X, Y}(\omega)=\frac{P_{X, Y}(\omega)}{\sqrt{P_{X}(\omega) P_{Y}(\omega)}}$. Find $C_{X, S}(\omega), C_{Y, S}(\omega)$, and $C_{X, Y}(\omega)$. We start with $C_{X, S}(\omega)=\frac{P_{X, S}(\omega)}{\sqrt{P_{X}(\omega) P_{S}(\omega)}}$. Using $P_{X, S}(\omega)=\tilde{X}(\omega) P_{S}(\omega)$ from part B and $P_{X}(\omega)=|\tilde{X}(\omega)|^{2} P_{S}(\omega)$ from part A, $C_{X, S}(\omega)=\frac{\tilde{X}(\omega) P_{S}(\omega)}{\sqrt{\left||\tilde{X}(\omega)|^{2} P_{S}(\omega)\right| P_{S}(\omega)}}=\frac{\tilde{X}(\omega)}{\sqrt{|\tilde{X}(\omega)|^{2}}}=\frac{\tilde{X}(\omega)}{|\tilde{X}(\omega)|}$, i.e., a complex number of magnitude 1 whose phase is the phase of $\tilde{X}(\omega)$. Similarly, $C_{Y, S}(\omega)=\frac{\tilde{Y}(\omega)}{|\tilde{Y}(\omega)|}$.
For $C_{X, Y}(\omega)=\frac{P_{X, Y}(\omega)}{\sqrt{P_{X}(\omega) P_{Y}(\omega)}}$, combining parts B and A yields
$C_{X, Y}(\omega)=\frac{\tilde{X}(\omega) \overline{\tilde{Y}}(\omega) P_{S}(\omega)}{\sqrt{\left||\tilde{X}(\omega)|^{2} P_{S}(\omega)\right)\left(|\tilde{Y}(\omega)|^{2} P_{S}(\omega)\right)}}=\frac{\tilde{X}(\omega) \overline{\tilde{Y}}(\omega)}{|\tilde{X}(\omega)| \tilde{Y}(\omega) \mid}$.
Q2: Cross-spectra and coherences: one input in common but also added noise
Setup: one signal $s(t)$ provides an input to two linear filters X and Y, with transfer functions $\tilde{X}(\omega)$ and $\tilde{Y}(\omega)$. We observe $x(t)$ and $y(t)$, which are the outputs of these linear filters *after adding independent signals $u(t)$ and $v(t)$. Assume $s(t)$ has power spectrum $P_{S}(\omega), u(t)$ has power spectrum $P_{U}(\omega)$, and $v(t)$ has power spectrum $P_{V}(\omega)$, and that $s(t), u(t)$ and $v(t)$ are all independent.

A) Calculate the power spectra $P_{X}(\omega)$ of $x(t)$ and $P_{Y}(\omega)$ of $y(t)$.
$P_{X}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{x}(\omega) \overline{\tilde{x}(\omega)}\rangle$, and $\tilde{x}(\omega)=\tilde{X}(\omega) \tilde{s}(\omega)+\tilde{u}(\omega)$, so
$P_{X}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\langle(\tilde{X}(\omega) \tilde{s}(\omega)+\tilde{u}(\omega)) \overline{(\tilde{X}(\omega) \tilde{s}(\omega)+\tilde{u}(\omega))}\rangle$
$=\lim _{T \rightarrow \infty} \frac{1}{T}\langle(\tilde{X}(\omega) \tilde{s}(\omega)) \overline{(\tilde{X}(\omega) \tilde{s}(\omega))}+(\tilde{X}(\omega) \tilde{s}(\omega)) \overline{\tilde{u}(\omega)}+\tilde{u}(\omega) \overline{(\tilde{X}(\omega) \tilde{s}(\omega))}+\tilde{u}(\omega) \overline{\tilde{u}(\omega)}\rangle$
Since $s(t)$ and $u(t)$ are independent, the cross-terms are zero.
$P_{X}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\langle(\tilde{X}(\omega) \tilde{s}(\omega)) \overline{(\tilde{X}(\omega) \tilde{s}(\omega))}+\tilde{u}(\omega) \overline{\tilde{u}(\omega)}\rangle=|\tilde{X}(\omega)|^{2} P_{S}(\omega)+P_{U}(\omega)$.
Similarly,
$P_{Y}(\omega)=|\tilde{Y}(\omega)|^{2} P_{S}(\omega)+P_{V}(\omega)$.
B) Calculate the cross spectrum of $x(t)$ and $y(t)$.

Using $\tilde{x}(\omega)=\tilde{X}(\omega) \tilde{s}(\omega)+\tilde{u}(\omega)$ and $\tilde{y}(\omega)=\tilde{Y}(\omega) \tilde{s}(\omega)+\tilde{v}(\omega)$:
$P_{X, Y}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{X}(\omega) \overline{\tilde{y}(\omega)}\rangle=\lim _{T \rightarrow \infty} \frac{1}{T}\langle(\tilde{X}(\omega) \tilde{s}(\omega)+\tilde{u}(\omega)) \overline{\overline{(\tilde{Y}(\omega) \tilde{S}(\omega)+\tilde{v}(\omega)})\rangle, ~}$
$=\tilde{X}(\omega) \overline{\tilde{Y}(\omega)} \lim _{T \rightarrow \infty} \frac{1}{T}\langle\tilde{s}(\omega) \overline{\tilde{s}(\omega)}\rangle=\tilde{X}(\omega) \overline{\tilde{Y}(\omega)} P_{S}(\omega)$
since, as in A, the cross-terms re zero.
C) Calculate the coherence of $x(t)$ and $y(t)$.

We start with the definition $C_{X, Y}(\omega)=\frac{P_{X, Y}(\omega)}{\sqrt{P_{X}(\omega) P_{Y}(\omega)}}$. Combining parts A and B yields

$$
\begin{aligned}
& C_{X, Y}(\omega)=\frac{\tilde{X}(\omega) \overline{\tilde{Y}(\omega)} P_{S}(\omega)}{\sqrt{\left(|\tilde{X}(\omega)|^{2} P_{S}(\omega)+P_{U}(\omega)\right) \mid\left(|\tilde{Y}(\omega)|^{2} P_{S}(\omega)+P_{V}(\omega)\right)}} \\
& =\frac{\tilde{X}(\omega) \bar{Y}(\omega)}{\left(\left.|\tilde{X}(\omega)|+\sqrt{\left.\frac{P_{U}(\omega)}{P_{S}(\omega)}\right)}| | \tilde{Y}(\omega) \right\rvert\,+\sqrt{\frac{P_{V}(\omega)}{P_{S}(\omega)}}\right.}
\end{aligned} .
$$

Note that this is typically less than 1 , because of the "noise terms" related to the unshared inputs, $u(t)$ and $v(t)$.

