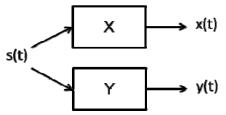
Linear Systems, Black Boxes, and Beyond

Homework #1 (2016-2017), Answers

Q1: Cross-spectra and coherences: one input in common and no added noise

Setup: one signal s(t) provides an input to two linear filters X and Y, with transfer functions $\tilde{X}(\omega)$ and $\tilde{Y}(\omega)$, and that x(t) and y(t) are their outputs. Assume s(t) has the power spectrum $P_s(\omega)$.



A) Calculate the power spectra $P_X(\omega)$ of x(t), $P_Y(\omega)$ of y(t), and $P_{X+Y}(\omega)$ of their sum, and demonstrate that $P_{X+Y}(\omega) \neq P_Y(\omega) + P_Y(\omega)$.

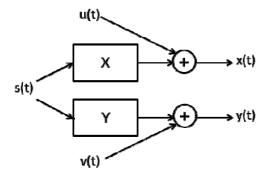
B) Define the cross-spectrum of x(t) and y(t) as $P_{X,Y}(\omega) = \lim_{T \to \infty} \frac{1}{T} \langle \tilde{x}(\omega) \overline{\tilde{y}(\omega)} \rangle$. Write an expression for $P_{X,Y}(\omega)$, $P_{X,S}(\omega)$, and $P_{Y,S}(\omega)$ in terms of $\tilde{X}(\omega)$, $\tilde{Y}(\omega)$, and $P_{S}(\omega)$.

C) Write an expression for $P_{X+Y}(\omega)$ in terms of $P_{X,Y}(\omega)$, $P_X(\omega)$ and $P_Y(\omega)$.

D) Define the coherence of x(t) and y(t) as $C_{X,Y}(\omega) = \frac{P_{X,Y}(\omega)}{\sqrt{P_X(\omega)P_Y(\omega)}}$. Find $C_{X,S}(\omega)$, $C_{Y,S}(\omega)$, and $C_{X,Y}(\omega)$.

Q2: Cross-spectra and coherences: one input in common but also added noise

Setup: one signal s(t) provides an input to two linear filters X and Y, with transfer functions $\tilde{X}(\omega)$ and $\tilde{Y}(\omega)$. We observe x(t) and y(t), which are the outputs of these linear filters *after adding independent signals u(t) and v(t). Assume s(t) has power spectrum $P_s(\omega)$, u(t) has power spectrum $P_U(\omega)$, and v(t) has power spectrum $P_V(\omega)$, and that s(t), u(t) and v(t) are all independent.



- A) Calculate the power spectra $P_X(\omega)$ of x(t) and $P_Y(\omega)$ of y(t).
- B) Calculate the cross spectrum of x(t) and y(t).
- C) Calculate the coherence of x(t) and y(t).