
Linear Transformations and Group Representations 
 
Homework #1 (2016-2017),  Questions 
 
Q1: Another mapping from a group (the rotations of a circle) into linear operators. Here, V  is a 
two-dimensional vector space. 
 
A. Find the eigenvalues of the transformation  

cos sin

sin cos
R
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B. Find its eigenvectors. 
C.  Since all of the transformations R  have the same eigenvectors (as shown in part B), they 

should commute.  That is, R R R R    . Verify this. 

 
Q2: Eigenvalues and eigenvectors in a function space. Here, V  is the vector space of functions 

f  on the real line.  Consider the mapping H , defined by 
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A. Show that H  is linear. 

B. Show that 
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0 ( ) xu x e-=  is an eigenvector of H , and find its eigenvalue. 

C. Show that 
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1( ) xu x xe-=  is an eigenvector of H , and find its eigenvalue. 

Q3.  Eigenvalues of a permutation matrix.  Say 

0 1 0

0 0 1

1 0 0
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A. Show that 3M I= .  
B. What are the eigenvalues of M ?  
 


