Linear Transformations and Group Representations

Homework \#1 (2016-2017), Questions
Q1: Another mapping from a group (the rotations of a circle) into linear operators. Here, V is a two-dimensional vector space.
A. Find the eigenvalues of the transformation
$R_{\theta}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$.
B. Find its eigenvectors.
C. Since all of the transformations R_{θ} have the same eigenvectors (as shown in part B), they should commute. That is, $R_{\theta} R_{\varphi}=R_{\varphi} R_{\theta}$. Verify this.

Q2: Eigenvalues and eigenvectors in a function space. Here, V is the vector space of functions f on the real line. Consider the mapping H, defined by $H f(x)=\frac{d^{2} f}{d x^{2}}(x)-x^{2} f(x)$.
A. Show that H is linear.
B. Show that $u_{0}(x)=e^{-x^{2} / 2}$ is an eigenvector of H, and find its eigenvalue.
C. Show that $u_{1}(x)=x e^{-x^{2} / 2}$ is an eigenvector of H, and find its eigenvalue.

Q3. Eigenvalues of a permutation matrix. Say $M=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$, so
$M\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{l}b \\ c \\ a\end{array}\right)$.
A. Show that $M^{3}=I$.
B. What are the eigenvalues of M ?

