Linear Transformations and Group Representations

Homework \#2 (2016-2017), Answers
Q1: Let M be the matrix representation of a permutation. (By a "matrix representation of a permutation, we mean, for example, that $M=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$ represents the permutation $\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \rightarrow\left(\begin{array}{l}b \\ c \\ a\end{array}\right)$ since $M\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{l}b \\ c \\ a\end{array}\right)$.) Show that M is unitary.

First solution. We are dealing with explicit matrix representations, so we need to work in coordinates. Say that $\vec{v}=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{N}\end{array}\right)$ and the permutation takes element j to element $\sigma(j)$, i.e., $M \vec{v}=\left(\begin{array}{c}v_{\sigma(1)} \\ \vdots \\ v_{\sigma(N)}\end{array}\right)$.
We first observe that to show that M is unitary, it suffices to show that $\langle\vec{v}, \vec{x}\rangle=\langle M \vec{v}, M \vec{x}\rangle$, since, with $\vec{x}=M^{-1} \vec{w}$, this is the same as $\left\langle\vec{v}, M^{-1} \vec{w}\right\rangle=\left\langle M \vec{v}, M M^{-1} \vec{w}\right\rangle=\langle M \vec{v}, \vec{w}\rangle$. Now note that $\langle\vec{v}, \vec{x}\rangle=\sum_{j=1}^{N} v_{j} x_{j}$ while $\langle M \vec{v}, M \vec{x}\rangle=\sum_{j=1}^{N} v_{\sigma(j)} X_{\sigma(j)}$; these sums are identical other than the order of the terms.

Second solution. In the above setup, $\langle M \vec{v}, \vec{w}\rangle=\sum_{j=1}^{N} v_{\sigma(j)} w_{j}$. Since the mapping $j \rightarrow \sigma(j)$ is a permutation, as j ranges over $1, \ldots, N$, then so does $\sigma(j)$. We can then reorder the above sum so that it is carried out in the order determined by $k=\sigma(j)$. That is,
$\langle M \vec{v}, \vec{w}\rangle=\sum_{j=1}^{N} v_{\sigma(j)} w_{j}=\sum_{k=1}^{N} v_{k} w_{\sigma^{-1}(k)}$. We then need to show that $M^{-1} \vec{w}=\left(\begin{array}{c}w_{\sigma^{-1}(1)} \\ \vdots \\ w_{\sigma^{-1}(N)}\end{array}\right)$, i.e., that the matrix corresponding to the permutation σ^{-1} is the inverse of the matrix corresponding to the permutation σ. This follows, because $M M^{-1} \vec{w}=M\left(\begin{array}{c}w_{\sigma^{-1}(1)} \\ \vdots \\ w_{\sigma^{-1}(N)}\end{array}\right)=\left(\begin{array}{c}w_{\sigma\left(\sigma^{-1}(1)\right)} \\ \vdots \\ w_{\sigma\left(\sigma^{-1}(N)\right)}\end{array}\right)=\left(\begin{array}{c}w_{1} \\ \vdots \\ w_{N}\end{array}\right)=\vec{w}$. Finally,
$\langle M \vec{v}, \vec{w}\rangle=\sum_{j=1}^{N} v_{\sigma(j)} w_{j}=\sum_{k=1}^{N} v_{k} w_{\sigma^{-1}(k)}=\left\langle\vec{v}, M^{-1} \vec{w}\right\rangle$.

Q2. Consider the Hilbert space of differentiable functions on the line for which $\int_{-\infty}^{\infty}|f(x)|^{2} d x$ is finite, and with the inner product $\langle f, g\rangle=\int_{-\infty}^{\infty} f(x) \overline{g(x)} d x$. Show that the linear operator defined by $L f(x)=i \frac{d f}{d x}$ is self-adjoint.
$\langle L f, g\rangle=\int_{-\infty}^{\infty} i\left(\frac{d}{d x} f(x)\right) \overline{g(x)} d x=\left.i f(x) g(x)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} i f(x)\left(\frac{d}{d x} \overline{g(x)}\right) d x$ (the first equality is the definition of L, the second is integration by parts). Now note that if f and g have finite integrals, then they must go to zero for large values of x. So,

$$
\langle L f, g\rangle=-\int_{-\infty}^{\infty} i f(x)\left(\frac{d}{d x} \overline{g(x)}\right) d x=\int_{-\infty}^{\infty} f(x)\left(\bar{i} \frac{d}{d x} \overline{g(x)}\right) d x=\int_{-\infty}^{\infty} f(x) \overline{(L g)(x)} d x=\langle f, L g\rangle
$$

Q3. Recall that a projection operator is a self-adjoint operator P for which $P^{2}=P$.
A. Show that if U is unitary with $U^{N}=I$, then $Q=\frac{1}{N} \sum_{k=0}^{N-1} U^{k}$ is a projection.

First, show that Q is self-adjoint.
$\langle Q x, y\rangle=\left\langle\frac{1}{N} \sum_{k=0}^{N-1} U^{k} x, y\right\rangle=\frac{1}{N} \sum_{k=0}^{N-1}\left\langle U^{k} x, y\right\rangle=\frac{1}{N} \sum_{k=0}^{N-1}\left\langle x,\left(U^{-1}\right)^{k} y\right\rangle=\left\langle x, \frac{1}{N} \sum_{k=0}^{N-1}\left(U^{-1}\right)^{k} y\right\rangle$; the first equality is the definition of Q; the second is the linearity of the inner product; the third follows because U is unitary; the fourth from linearity. Now note that $\left(U^{-1}\right)^{k}=\left(U^{k}\right)^{-1}=U^{n-k}$, since $\left(U^{k}\right) U^{n-k}=U^{n}=1$. So, $\langle Q x, y\rangle=\left\langle x, \frac{1}{N} \sum_{k=0}^{N-1} U^{N-k} y\right\rangle$. Now, note that as k runs from 0 to $N-1$, thenthe exponents of $U, N-k$, run from N to 1 . Since $U^{N}=I=U^{0}$, this is the same as running from $N-1$ down to 0 . So $\sum_{k=0}^{N-1} U^{N-k}=\sum_{k=0}^{N-1} U^{N}$, and $\langle Q x, y\rangle=\langle x, Q y\rangle$ as required.

Next, show that $Q^{2}=Q$.
$Q^{2}=\left(\frac{1}{N} \sum_{l=0}^{N-1} U^{l}\right)\left(\frac{1}{N} \sum_{m=0}^{N-1} U^{m}\right)=\frac{1}{N^{2}}\left(\sum_{l=0}^{N-1} U^{l}\right)\left(\sum_{m=0}^{N-1} U^{m}\right)=\frac{1}{N^{2}} \sum_{l=0}^{N-1} \sum_{m=0}^{N-1} U^{l+m}$. Note that, since
$U^{N}=I, U^{l+m}=U^{l+m-N}$, so the final exponent can always be reduced $(\bmod N)$ to an integer k ranging from 0 to $N-1$. So to simplify this sum, we need to count how many combinations of l and m result in a value of $l+m$ that is equal to $k(\bmod N)$. However, $k=l+m(\bmod N)$
is equivalent to $m=k-l(\bmod N)$, which means that for any value of k and l, there is always exactly one solution m in the range from 0 to $N-1$. So each value of the exponent $k=l+m$ can be achieved by exactly N pairs of values of l and m. So

$$
Q^{2}=\frac{1}{N^{2}} \sum_{l=0}^{N-1} \sum_{m=0}^{N-1} U^{l+m}=\frac{1}{N^{2}}\left(\sum_{k=0}^{N-1} N U^{k}\right)=\frac{1}{N}\left(\sum_{k=0}^{N-1} U^{k}\right)=Q \text {, as required. }
$$

B. Let U be given by the permutation matrix corresponding to $\left(\begin{array}{l}a \\ b \\ c \\ d \\ e \\ f\end{array}\right) \rightarrow\left(\begin{array}{l}b \\ c \\ a \\ d \\ f \\ e\end{array}\right)$. Compute the Q defined in part A, and also $Q\left(\begin{array}{l}a \\ b \\ c \\ d \\ e \\ f\end{array}\right)$, which directly verifies that Q is a projection.
$U=\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right) \cdot U^{2}=\left(\begin{array}{llllll}0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right) \cdot U^{3}=\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$.
So in U^{k}, the first three rows and columns become the identity for $k=3,6, \ldots$. The $(4,4)$ element is always the identity. Row-and-columns 5 and 6 become the identity for $k=2,4,6, \ldots$. So for $U^{k}=I, k$ must be a multiple of 3 and of 2, i.e., $N=6$.

$$
Q=\frac{1}{6} \sum_{k=0}^{5} U^{k}=\left(\begin{array}{cccccc}
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 0 & 1 / 2 & 1 / 2
\end{array}\right) .
$$

Then $Q\left(\begin{array}{l}a \\ b \\ c \\ d \\ e \\ f\end{array}\right)=\left(\begin{array}{c}\frac{a+b+c}{3} \\ \frac{a+b+c}{3} \\ \frac{a+b+c}{3} \\ d \\ \frac{e+f}{2} \\ \frac{e+f}{2}\end{array}\right)$, i.e., Q averages the first three elements and the last two elements. So
it is obviously a projection; averaging a second time does not change the values.

