Linear Transformations and Group Representations

Homework \#4 (2016-2017), Answers

Q1. Dual (adjoint) representations. Recall that given a vector space V, the dual vector space V^{*} is the space of all linear maps from V to the base field.
A. Find a coordinate-free homomorphism between linear transformations L in $\operatorname{Hom}(V, W)$ and linear transformations $\Omega(L)$ in $\operatorname{Hom}\left(W^{*}, V^{*}\right)$.

For every φ in W^{*}, we need to find a $(\Omega(L))(\varphi)$ in V^{*}. That is, we need to exhibit $(\Omega(L))(\varphi)$ as a mapping from V to the base field. So we define $((\Omega(L))(\varphi))(v)=\varphi(L(v))$. This makes sense since $L(v)$ is in W, so φ, which is in W^{*}, maps $L(v)$ to a scalar.
B. Extending the above setup: Since we have several vector spaces around, let's designate the above mapping from $\operatorname{Hom}(V, W)$ to $\operatorname{Hom}\left(W^{*}, V^{*}\right)$ as $\Omega_{V W}$. Correspondingly, $\Omega_{W X}$ is a mapping from $\operatorname{Hom}(W, X)$ to $\operatorname{Hom}\left(X^{*}, W^{*}\right)$: for every linear transformation M in $\operatorname{Hom}(W, X), \Omega_{W X}(M)$ is in $\operatorname{Hom}\left(X^{*}, W^{*}\right)$. With this setup, ML (apply L, then apply M) is in $\operatorname{Hom}(V, X)$, and $\Omega_{V X}(M L)$ is in $\operatorname{Hom}\left(X^{*}, V^{*}\right)$. Show that $\Omega_{V X}(M L)=\Omega_{V W}(L) \Omega_{W X}(M)$.

For any ψ in X^{*} and v in $V,\left(\left(\Omega_{V X}(M L)\right)(\psi)\right)(v)=\psi(M L(v))$.
But also, $\left(\left(\Omega_{V W}(L)\right)\left(\Omega_{W X}(M)\right)(\psi)\right)(v)=\left(\left(\Omega_{W X}(M)\right)(\psi)\right)(L(v))=\psi(M L(v))$.
C. Now, taking $V=W=X$ (and $V^{*}=W^{*}=X^{*}$ and $\Omega=\Omega_{V W}=\Omega_{W X}=\Omega_{V X}$), and putting A and B together: we have found a mapping Ω from $\operatorname{Hom}(V, V)$ to $\operatorname{Hom}\left(V^{*}, V^{*}\right)$ for which $\Omega(M L)=\Omega(L) \Omega(M)$. Show that, if U_{g} is a representation in V, then $\Omega\left(U_{g}{ }^{-1}\right)$ is a representation in V^{*}, and find its character. For the latter, it is useful to show that the eigenvalues of $\Omega(U)$ are the same as the eigenvalues of U, for any unitary operator U.

To show $\Omega\left(U_{g}{ }^{-1}\right)$ is a representation, we need to show it preserves group structure.
$\Omega\left(U_{g h}{ }^{-1}\right)=\Omega\left(\left(U_{g} U_{h}\right)^{-1}\right)=\Omega\left(U_{h}{ }^{-1} U_{g}{ }^{-1}\right)=\Omega\left(U_{g}{ }^{-1}\right) \Omega\left(U_{h}{ }^{-1}\right)$. The first equality is because U_{g} is a representation. The second is because the inverse of a product is the product of the inverses in reverse order. The third follows from part B, Ω inverts the order of multiplication.

To find its character, we first show that if A is a normal operator (i.e, it has a complete set of eigenvectors and these form a basis), then the eigenvalues of $\Omega(A)$ are the same as the eigenvalues of A. Say A has eigenvalue λ and $\Omega(A)$ has eigenvalue μ. Then $A v=\lambda v$ for some v and $\Omega(A) \varphi=\mu \varphi$ for some φ. Then $(\Omega(A) \varphi)(v)=\mu \varphi(v)$ but also
$(\Omega(A) \varphi)(v)=\varphi(A v)=\varphi(\lambda v)=\lambda \varphi(v)$. So either $\varphi(v)=0$ or $\lambda=\mu$. For each φ, the alternative $\varphi(v)=0$ cannot jold for all of the eigenvectors for A, since then φ would be zero on for all elements of a basis for V. So at least one eigenvector for A has $\varphi(v) \neq 0$, which in turn means that for this eigenvector, A and an eigenvector of $\Omega(A)$ share the same eigenvalue. Now strip off this eigenvector, and proceed downward.

Since the trace is the sum of the eigenvalues: $\operatorname{tr}\left(\Omega\left(U_{g^{-1}}\right)\right)=\operatorname{tr}\left(U_{g^{-1}}\right)=\operatorname{tr}\left(U_{g}{ }^{-1}\right)$.
Since U_{g} is unitary, all of its eigenvalues are complex numbers of magnitude 1, i.e., complex numbers λ for which $|\lambda|^{2}=\lambda \bar{\lambda}=1$. It follows that the eigenvectors of $U_{g}{ }^{-1}$ are $\lambda^{-1}=\bar{\lambda}$. Since the trace is the sum of the eigenvectors, $\operatorname{tr}\left(\Omega\left(U_{g^{-1}}\right)\right)=\overline{\operatorname{tr}\left(U_{g}\right)}$.

Q2: Find a coordinate-free homomorphism between $V^{*} \otimes W$ and $\operatorname{Hom}(V, W)$. That is, for every $\varphi \otimes w$ in $V^{*} \otimes W$, find an element $\Phi=Z(\varphi \otimes w)$ in $\operatorname{Hom}(V, W)$, such that the mapping Z from $\varphi \otimes w$ to Φ is linear. (See Q2 of Homework \#3, Groups, Fields and Vector Spaces (2008-2009) for more of this type.)

To exhibit $\Phi=Z(\varphi \otimes w)$ as a member of $\operatorname{Hom}(V, W)$, we need to demonstrate it as a linear transformation from elements v of V into elements w of W. We are given φ in V^{*}, so it is a linear map from V to the base field k. Therefore, $\varphi(v)$ is a scalar, and $\varphi(v) w$ is in W. So we can define $Z(\varphi \otimes w)$ as the homomorphism Φ for which $\Phi(v)=\varphi(v) w$.

Q3. Character tables. Consider the group of rotations and mirror-flips of a square. Specifically, designate the three vertices as a, b, c, and d (in clockwise order, with a at the top right), and the group operations as I for the identity; R and L for rotation right and left by $1 / 4$ of a cycle; Z for rotation by $1 / 2$ of a cycle, M_{V} for a mirror flip on the vertical axis (swapping $a \leftrightarrow d$ and $b \leftrightarrow c$); M_{H} for a mirror flip on the vertical axis (swapping $a \leftrightarrow b$ and $c \leftrightarrow d$), $M_{a c} a$ flip on the diagonal running from a to c (swapping $b \leftrightarrow d$), and $M_{b d}$ a flip on the diagonal running from b to d (swapping $a \leftrightarrow c$). Compute the characters at each of these elements for the representations described in the table below. Recall (from earlier weeks) that a permutation is "odd" if it can be generated by an odd number of pair-swaps, and even if it requires an even number of pair swaps.

Group element: $\quad I \quad R \quad R \quad L \quad Z \quad Z \quad M_{V} \quad M_{H} \quad M_{a c} \quad M_{b d}$
Representation:
E : the trivial representation
(all group elements map to 1)
P : Representation as
permutation matrices
on the letters $\{a, b, c, d\}$
S : Representation that maps
even permutations on $\{a, b, c, d\}$
$P_{\text {opp }}:$ Representation as
permutation matrices on the two pairs of opposite sides
$P_{\text {diag }}:$ Representation as
permutation matrices
on the two diagonals
C : Representation as
2×2 change-of-coordinate
matrices in the plane

R :Regular representation

The completed table follows this analysis:
Group element:
$E:$ the trivial representation
P : permutations on $\{a, b, c, d\}$
S : even and odd
$\begin{array}{lllllllllll}\text { permutations on }\{a, b, c, d\} & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1\end{array}$
$P_{\text {diag }}$: permutation matrices
on the two diagonals
$\begin{array}{llllllllll}P_{\text {opp }}: \text { permutation matrices on } & 2 & 0 & 0 & 2 & 2 & 2 & 0 & 0\end{array}$ the two pairs of opposite sides

C : Representation as
2×2 change-of-coordinate matrices in the plane
R : Regular representation
8
$\begin{array}{llllllll}8 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

