
Linear Transformations and Group Representations 
 
Homework #4 (2016-2017),  Answers 
 
 
Q1.  Dual (adjoint) representations.  Recall that given a vector space V , the dual vector space *V  
is the space of all linear maps from V  to the base field.   
 
A. Find a coordinate-free homomorphism between linear transformations L  in ( , )Hom V W  and 

linear transformations ( )LW  in  * *( , )Hom W V . 
 
For every j  in *W , we need to find a ( )( ) ( )L jW  in *V .  That is, we need to exhibit ( )( ) ( )L jW  as 

a mapping from V  to the base field.  So we define ( )( ) ( )( ) ( ) ( ) ( )L v L vj jW = .  This makes sense 

since ( )L v  is in W , so j , which is in *W , maps ( )L v  to a scalar. 
 
B. Extending the above setup: Since we have several vector spaces around, let’s designate the 
above mapping from ( , )Hom V W  to * *( , )Hom W V  as VWW . Correspondingly, WXW  is a mapping 

from  ( , )Hom W X  to * *( , )Hom X W :  for every linear transformation M  in ( , )Hom W X , ( )WX MW  

is in * *( , )Hom X W .  With this setup, ML  (apply L , then apply M ) is in ( , )Hom V X , and 

( )VX MLW  is in * *( , )Hom X V . Show that ( ) ( ) ( )VX VW WXML L MW =W W . 

 

For any y  in *X  and v  in V , ( )( ) ( )( ) ( ) ( ) ( )VX ML v ML vy yW = . 

But also, ( )( )( ) ( )( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )VW WX WXL M v M L v ML vy y yW W = W = . 

 
C. Now, taking V W X= =  (and * * *V W X= =  and VW WX VXW=W =W =W ), and putting A and B 

together:  we have found a mapping W  from ( , )Hom V V  to * *( , )Hom V V  for which 

( ) ( ) ( )ML L MW =W W .  Show that, if gU  is a representation in V , then 1( )gU -W  is a representation 

in *V , and find its character. For the latter, it is useful to show that the eigenvalues of ( )UW  are 
the same as the eigenvalues of U , for any unitary operator U .  
 
To show 1( )gU -W   is a representation, we need to show it preserves group structure.  

( ) ( ) ( ) ( )1 1 1 1 1 1( ) ( )gh g h h g g hU U U U U U U- - - - - -W =W =W =W W .  The first equality is because gU  is a 

representation.  The second is because the inverse of a product is the product of the inverses in 
reverse order.  The third follows from part B, W  inverts the order of multiplication. 
 
To find its character, we first show that if A  is a normal operator (i.e, it has a complete set of 
eigenvectors and these form a basis), then the eigenvalues of ( )AW  are the same as the eigenvalues 
of A . Say A  has eigenvalue l  and ( )AW  has eigenvalue m . Then Av vl=  for some v  and 

( )A j mjW =  for some j .  Then ( )( ) ( ) ( )A v vj mjW =  but also 



( )( ) ( ) ( ) ( ) ( )A v Av v vj j j l ljW = = = . So either  ( ) 0vj =  or l m= . For each j , the alternative 

( ) 0vj =  cannot jold for all of the eigenvectors for A , since then j  would be zero on for all 
elements of a basis for V .  So at least one eigenvector for  A  has ( ) 0vj ¹ , which in turn means 
that for this eigenvector, A  and an eigenvector of ( )AW  share the same eigenvalue.  Now strip off 
this eigenvector, and proceed downward. 
 

Since the trace is the sum of the eigenvalues: ( ) ( ) ( )1 1

1( ) gg g
tr U tr U tr U- -

-W = = .   

Since gU  is unitary, all of its eigenvalues are complex numbers of magnitude 1, i.e., complex 

numbers l  for which 
2

1l ll= = .  It follows that the eigenvectors of 1
gU -  are 1l l- = .  Since 

the trace is the sum of the eigenvectors, ( ) ( )1( ) gg
tr U tr U-W = .   

 
 
Q2: Find a coordinate-free homomorphism between V W   and ( , )Hom V W  .  That is, for every 

wjÄ  in V W  , find an element ( )Z wjF= Ä  in ( , )Hom V W , such that the mapping Z  from 
wjÄ   to F  is linear. (See Q2 of Homework #3, Groups, Fields and Vector Spaces (2008-2009) 

for more of this type.) 
 
To exhibit ( )Z wjF= Ä as a member of ( , )Hom V W , we need to demonstrate it as a linear 

transformation from elements v  of V  into elements w  of W .  We are given j  in *V ,  so it is a 
linear map from V  to the base field k .  Therefore, ( )vj  is a scalar, and ( )v wj  is in W .  So we can 
define ( )Z wjÄ  as the homomorphism F  for which ( ) ( )v v wjF = . 
 
 
Q3.  Character tables. Consider the group of rotations and mirror-flips of a square. Specifically, 
designate the three vertices as a , b , c , and d   (in clockwise order, with a  at the top right), and 
the group operations as I  for the identity; R  and L  for rotation right and left by 1/4 of a cycle; Z   
for rotation by 1/2 of a cycle, VM  for a mirror flip on the vertical axis (swapping a d«  and 

b c« ); HM  for a mirror flip on the vertical axis (swapping a b«  and c d« ), acM  a flip on the 

diagonal running from a  to c  (swapping b d« ), and bdM  a flip on the diagonal running from b  

to d  (swapping a c« ). Compute the characters at each of these elements for the representations 
described in the table below.  Recall (from earlier weeks) that a permutation is “odd” if it can be 
generated by an odd number of pair-swaps, and even if it requires an even number of pair swaps. 
 
Group element:  I   R   L  Z   VM   HM   acM   bdM   

Representation: 
E : the trivial representation 
(all group elements map to 1) 
 
P : Representation as 
permutation matrices 



on the letters { , , , }a b c d   
 
S : Representation that maps 
even permutations on { , , , }a b c d   

oppP : Representation as  

permutation matrices on  
the two pairs of opposite sides 
 

diagP : Representation as 

permutation matrices 
on the two diagonals  
 
C : Representation as  
2 2´   change-of-coordinate 
matrices in the plane  
 
R :Regular representation 
 
 
The completed table follows this analysis: 
Group element:  I   R   L  Z   VM   HM   acM   bdM   

 
E : the trivial representation 1 1 1 1 1 1 1 1 
 
P : permutations on { , , , }a b c d   4 0 0 0 0 0 2 2 
 
S : even and odd  
permutations on { , , , }a b c d   1 -1 -1 1 1 1 -1 -1 
 

diagP : permutation matrices 2 0 0 2 0 0 2 2 

on the two diagonals  
 

oppP : permutation matrices on  2 0 0 2 2 2 0 0 

the two pairs of opposite sides 
 
C : Representation as  2 0 0 -2 0 0 0 0 
2 2´   change-of-coordinate  
matrices in the plane  
 
R : Regular representation 8 0 0 0 0 0 0 0   


