Linear Transformations and Group Representations

Homework #4 (2016-2017), Answers

Q1. Dual (adjoint) representations. Recall that given a vector space V, the dual vector space V^* is the space of all linear maps from V to the base field.

A. Find a coordinate-free homomorphism between linear transformations L in Hom(V,W) and linear transformations $\Omega(L)$ in Hom(W^*, V^*).

For every φ in W^* , we need to find a $(\Omega(L))(\varphi)$ in V^* . That is, we need to exhibit $(\Omega(L))(\varphi)$ as a mapping from V to the base field. So we define $((\Omega(L))(\varphi))(v) = \varphi(L(v))$. This makes sense since L(v) is in W, so φ , which is in W^* , maps L(v) to a scalar.

B. Extending the above setup: Since we have several vector spaces around, let's designate the above mapping from Hom(V,W) to $Hom(W^*,V^*)$ as Ω_{VW} . Correspondingly, Ω_{WX} is a mapping from Hom(W,X) to $Hom(X^*,W^*)$: for every linear transformation M in Hom(W,X), $\Omega_{WX}(M)$ is in $Hom(X^*,W^*)$. With this setup, ML (apply L, then apply M) is in Hom(V,X), and $\Omega_{VX}(ML)$ is in $Hom(X^*,V^*)$. Show that $\Omega_{VX}(ML) = \Omega_{VW}(L)\Omega_{WX}(M)$.

For any ψ in X^* and v in V, $((\Omega_{vx}(ML))(\psi))(v) = \psi(ML(v))$. But also, $((\Omega_{vw}(L))(\Omega_{wx}(M))(\psi))(v) = ((\Omega_{wx}(M))(\psi))(L(v)) = \psi(ML(v))$.

C. Now, taking V = W = X (and $V^* = W^* = X^*$ and $\Omega = \Omega_{VW} = \Omega_{VX} = \Omega_{VX}$), and putting A and B together: we have found a mapping Ω from Hom(V,V) to Hom(V^*, V^*) for which $\Omega(ML) = \Omega(L)\Omega(M)$. Show that, if U_g is a representation in V, then $\Omega(U_g^{-1})$ is a representation in V^* , and find its character. For the latter, it is useful to show that the eigenvalues of $\Omega(U)$ are the same as the eigenvalues of U, for any unitary operator U.

To show $\Omega(U_g^{-1})$ is a representation, we need to show it preserves group structure. $\Omega(U_{gh}^{-1}) = \Omega((U_g U_h)^{-1}) = \Omega(U_h^{-1} U_g^{-1}) = \Omega(U_g^{-1}) \Omega(U_h^{-1})$. The first equality is because U_g is a representation. The second is because the inverse of a product is the product of the inverses in reverse order. The third follows from part B, Ω inverts the order of multiplication.

To find its character, we first show that if A is a normal operator (i.e, it has a complete set of eigenvectors and these form a basis), then the eigenvalues of $\Omega(A)$ are the same as the eigenvalues of A. Say A has eigenvalue λ and $\Omega(A)$ has eigenvalue μ . Then $Av = \lambda v$ for some v and $\Omega(A)\varphi = \mu\varphi$ for some φ . Then $(\Omega(A)\varphi)(v) = \mu\varphi(v)$ but also

 $(\Omega(A)\varphi)(v) = \varphi(Av) = \varphi(\lambda v) = \lambda\varphi(v)$. So either $\varphi(v) = 0$ or $\lambda = \mu$. For each φ , the alternative $\varphi(v) = 0$ cannot jold for all of the eigenvectors for *A*, since then φ would be zero on for all elements of a basis for *V*. So at least one eigenvector for *A* has $\varphi(v) \neq 0$, which in turn means that for this eigenvector, *A* and an eigenvector of $\Omega(A)$ share the same eigenvalue. Now strip off this eigenvector, and proceed downward.

Since the trace is the sum of the eigenvalues: $tr(\Omega(U_{g^{-1}})) = tr(U_{g^{-1}}) = tr(U_{g^{-1}})$.

Since U_g is unitary, all of its eigenvalues are complex numbers of magnitude 1, i.e., complex numbers λ for which $|\lambda|^2 = \lambda \overline{\lambda} = 1$. It follows that the eigenvectors of U_g^{-1} are $\lambda^{-1} = \overline{\lambda}$. Since the trace is the sum of the eigenvectors, $tr(\Omega(U_g^{-1})) = \overline{tr(U_g)}$.

Q2: Find a coordinate-free homomorphism between $V^* \otimes W$ and Hom(V,W). That is, for every $\varphi \otimes w$ in $V^* \otimes W$, find an element $\Phi = Z(\varphi \otimes w)$ in Hom(V,W), such that the mapping Z from $\varphi \otimes w$ to Φ is linear. (See Q2 of Homework #3, Groups, Fields and Vector Spaces (2008-2009) for more of this type.)

To exhibit $\Phi = Z(\varphi \otimes w)$ as a member of Hom(V,W), we need to demonstrate it as a linear transformation from elements v of V into elements w of W. We are given φ in V^* , so it is a linear map from V to the base field k. Therefore, $\varphi(v)$ is a scalar, and $\varphi(v)w$ is in W. So we can define $Z(\varphi \otimes w)$ as the homomorphism Φ for which $\Phi(v) = \varphi(v)w$.

Q3. Character tables. Consider the group of rotations and mirror-flips of a square. Specifically, designate the three vertices as a, b, c, and d (in clockwise order, with a at the top right), and the group operations as I for the identity; R and L for rotation right and left by 1/4 of a cycle; Z for rotation by 1/2 of a cycle, M_v for a mirror flip on the vertical axis (swapping $a \leftrightarrow d$ and $b \leftrightarrow c$); M_H for a mirror flip on the vertical axis (swapping $a \leftrightarrow d$), M_{ac} a flip on the diagonal running from a to c (swapping $b \leftrightarrow d$), and M_{bd} a flip on the diagonal running from b to d (swapping $a \leftrightarrow c$). Compute the characters at each of these elements for the representations described in the table below. Recall (from earlier weeks) that a permutation is "odd" if it can be generated by an odd number of pair-swaps, and even if it requires an even number of pair swaps.

Group element: Representation: E : the trivial representation (all group elements map to 1)

P : *Representation as permutation matrices*

 $I \quad R \quad L \quad Z \quad M_V \quad M_H \quad M_{ac} \quad M_{bd}$

on the letters $\{a, b, c, d\}$

S: Representation that maps even permutations on $\{a,b,c,d\}$ P_{opp} : Representation as permutation matrices on the two pairs of opposite sides

 P_{diag} : Representation as permutation matrices on the two diagonals

C: Representation as 2×2 change-of-coordinate matrices in the plane

R:Regular representation

The completed table follows this an	alysis:							
Group element:	Ι	R	L	Ζ	M_{V}	M_{H}	M_{ac}	M_{bd}
E : the trivial representation	1	1	1	1	1	1	1	1
<i>P</i> : permutations on $\{a, b, c, d\}$	4	0	0	0	0	0	2	2
<i>S</i> : even and odd permutations on { <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> }	1	-1	-1	1	1	1	-1	-1
P_{diag} : permutation matrices on the two diagonals	2	0	0	2	0	0	2	2
P_{opp} : permutation matrices on the two pairs of opposite sides	2	0	0	2	2	2	0	0
C: Representation as 2×2 change-of-coordinate matrices in the plane	2	0	0	-2	0	0	0	0
R : Regular representation	8	0	0	0	0	0	0	0