Linear Transformations and Group Representations

Homework #4 (2016-2017), Answers

Q1. Dual (adjoint) representations. Recall that given a vector space V , the dual vector space V"~
is the space of all linear maps from V to the base field.

A. Find a coordinate-free homomorphism between linear transformations L in Hom(V,W) and
linear transformations (L) in Hom(W™,V").

For every ¢ in W™, we need to find a (Q(L))(¢) in V". That is, we need to exhibit (22(L))(y) as
a mapping from V to the base field. So we define ((Q(L))(go))(v) = ¢(L(v)). This makes sense

since L(v) isin W, so ¢, which isin W™, maps L(v) to a scalar.

B. Extending the above setup: Since we have several vector spaces around, let’s designate the
above mapping from Hom(V,W) to Hom(W",V") as ,, . Correspondingly, €, is a mapping

from Hom(W, X) to Hom(X",W"): for every linear transformation M in Hom(W, X), €, (M)
isin Hom(X",W"). With this setup, ML (apply L, then apply M )isin Hom(V, X), and
Qu (ML) isin Hom(X™,V"). Show that €2, (ML) =, (L)Q2,x (M).

Forany ¢ in X" and v in V., ((Qy, (ML)) (%)) (v) =1 (ML(V)).
But also, (2 (L))(Qux (M)) (1)) (V) = (s (M)) (1)) (L(V)) = % (ML(V)) .

C. Now, taking V =W = X (and V' =W = X" and Q=9,,, = Q,x = ), and putting A and B
together: we have found a mapping € from Hom(V,V) to Hom(V",V") for which
QML) =Q(L)2(M). Show that, if U is a representation in V , then Q(Ugfl) IS a representation

in V", and find its character. For the latter, it is useful to show that the eigenvalues of Q(U) are
the same as the eigenvalues of U , for any unitary operator U .

To show Q(Ugfl) is a representation, we need to show it preserves group structure.
QU™ = Q((UgUh)’l) = Q(Uh’lug’l) = Q(Ug’l)Q(Uh’l). The first equality is because U isa

representation. The second is because the inverse of a product is the product of the inverses in
reverse order. The third follows from part B, €2 inverts the order of multiplication.

To find its character, we first show that if A is a normal operator (i.e, it has a complete set of
eigenvectors and these form a basis), then the eigenvalues of 2(A) are the same as the eigenvalues

of A.Say A haseigenvalue )\ and €2(A) has eigenvalue x. Then Av= \v for some v and
Q(A)p = py forsome . Then (Q(A)p)(v) = pp(v) butalso



(A @) (V) = p(AV) = p(AV) = Ap(v) . So either o(v) =0 or A= . For each ¢, the alternative
©(v) =0 cannot jold for all of the eigenvectors for A, since then ¢ would be zero on for all
elements of a basis for V . So at least one eigenvector for A has ¢(v) = 0, which in turn means
that for this eigenvector, A and an eigenvector of €2(A) share the same eigenvalue. Now strip off
this eigenvector, and proceed downward.

Since the trace is the sum of the eigenvalues: tr (Q(Ug,l)) =tr (Ug,l ) =tr(U,™).
Since U, is unitary, all of its eigenvalues are complex numbers of magnitude 1, i.e., complex
numbers A for which |)\|2 =X =1. Itfollows that the eigenvectors of U~ are A™* =X . Since

the trace is the sum of the eigenvectors, tr (Q(Ug,l)) =tr(U,).

Q2: Find a coordinate-free homomorphism between V*®W and Hom(V,W) . That is, for every
YW in V' ®W , find an element ® =Z(p ®w) in Hom(V,W), such that the mapping Z from
p®wW to & islinear. (See Q2 of Homework #3, Groups, Fields and Vector Spaces (2008-2009)
for more of this type.)

To exhibit ® = Z(p ®w)as a member of Hom(V,W), we need to demonstrate it as a linear
transformation from elements v of V into elements w of W . We are given ¢ in V', soitisa
linear map from V to the base field k. Therefore, (v) is ascalar, and ¢(v)w isin W . So we can
define Z(p ®w) as the homomorphism & for which ®(v) = p(v)w.

Q3. Character tables. Consider the group of rotations and mirror-flips of a square. Specifically,
designate the three verticesas a, b, ¢, and d (in clockwise order, with a at the top right), and
the group operations as | for the identity; R and L for rotation right and left by 1/4 of a cycle; Z
for rotation by 1/2 of a cycle, M,, for a mirror flip on the vertical axis (swapping a < d and

b c); M, foramirror flip on the vertical axis (swapping a«<b and c<—d), M, aflip on the
diagonal running from a to ¢ (swapping b < d ), and M, a flip on the diagonal running from b

to d (swapping a < c). Compute the characters at each of these elements for the representations
described in the table below. Recall (from earlier weeks) that a permutation is ““odd”” if it can be
generated by an odd number of pair-swaps, and even if it requires an even number of pair swaps.

Group element: I R L Z M, M, M M,

Representation:
E : the trivial representation
(all group elements map to 1)

P : Representation as
permutation matrices



on the letters {a,b,c,d}

S : Representation that maps
even permutations on {a,b,c,d}

P, - Representation as

permutation matrices on
the two pairs of opposite sides

Py - REPresentation as

permutation matrices
on the two diagonals

C : Representation as
2x2 change-of-coordinate
matrices in the plane

R :Regular representation

The completed table follows this analysis:

Group element: I

E : the trivial representation 1
P : permutations on {a,b,c,d} 4

S : even and odd

permutations on {a,b,c,d} 1
Py - PErMutation matrices 2

on the two diagonals

P, - Permutation matrices on 2
the two pairs of opposite sides

C : Representation as 2
2x2 change-of-coordinate

matrices in the plane

R : Regular representation 8
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