Linear Transformations and Group Representations

Homework #4 (2016-2017), Questions

Q1. Dual (adjoint) representations. Recall that given a vector space V, the dual vector space V^* is the space of all linear maps from V to the base field.

A. Find a coordinate-free homomorphism between linear transformations *L* in Hom(V,W) and linear transformations $\Omega(L)$ in $Hom(W^*,V^*)$.

B. Extending the above setup: Since we have several vector spaces around, let's designate the above mapping from Hom(V,W) to $Hom(W^*,V^*)$ as Ω_{VW} . Correspondingly, Ω_{WX} is a mapping from Hom(W,X) to $Hom(X^*,W^*)$: for every linear transformation M in Hom(W,X), $\Omega_{WX}(M)$ is in $Hom(X^*,W^*)$. With this setup, ML (apply L, then apply M) is in Hom(V,X), and $\Omega_{VX}(ML)$ is in $Hom(X^*,V^*)$. Show that $\Omega_{VX}(ML) = \Omega_{VW}(L)\Omega_{WX}(M)$.

C. Now, taking V = W = X (and $V^* = W^* = X^*$), and putting A and B together: we have found a mapping Ω from Hom(V,V) to $Hom(V^*,V^*)$ for which $\Omega(ML) = \Omega(L)\Omega(M)$. Show that, if U_g is a representation in V, then $\Omega(U_g^{-1})$ is a representation in V^* , and find its character. For the latter, it is useful to show that the eigenvalues of $\Omega(U)$ are the same as the eigenvalues of U, for any unitary operator U.

Q2: Find a coordinate-free homomorphism between $V^* \otimes W$ and Hom(V,W). That is, for every $\varphi \otimes w$ in $V^* \otimes W$, find an element $\Phi = Z(\varphi \otimes w)$ in Hom(V,W), such that the mapping Z from $\varphi \otimes w$ to Φ is linear. (See Q2 of Homework #3, Groups, Fields and Vector Spaces (2008-2009) for more of this type.)

Q3. Character tables. Consider the group of rotations and mirror-flips of a square. Specifically, designate the three vertices as a, b, c, and d (in clockwise order, with a at the top right), and the group operations as I for the identity; R and L for rotation right and left by 1/4 of a cycle; Z for rotation by 1/2 of a cycle, M_v for a mirror flip on the vertical axis (swapping $a \leftrightarrow d$ and $b \leftrightarrow c$); M_H for a mirror flip on the vertical axis (swapping $a \leftrightarrow d$), M_{ac} a flip on the diagonal running from a to c (swapping $b \leftrightarrow d$), and M_{bd} a flip on the diagonal running from b to d (swapping $a \leftrightarrow c$). Compute the characters at each of these elements for the representations described in the table below. Recall (from earlier weeks) that a permutation is "odd" if it can be generated by an odd number of pair-swaps, and even if it requires an even number of pair swaps.

Group element: $I \quad R \quad L \quad Z \quad M_V \quad M_H \quad M_{ac} \quad M_{bd}$ Representation: *E* : the trivial representation (all group elements map to 1)

P : Representation as permutation matrices on the letters $\{a, b, c, d\}$

S: Representation that maps even permutations on $\{a, b, c, d\}$ P_{opp} : Representation as permutation matrices on the two pairs of opposite sides

 P_{diag} : Representation as permutation matrices on the two diagonals

C: Representation as 2×2 change-of-coordinate matrices in the plane

R :Regular representation