Linear Transformations and Group Representations

Homework \#4 (2016-2017), Questions

Q1. Dual (adjoint) representations. Recall that given a vector space V, the dual vector space V^{*} is the space of all linear maps from V to the base field.
A. Find a coordinate-free homomorphism between linear transformations L in $\operatorname{Hom}(V, W)$ and linear transformations $\Omega(L)$ in $\operatorname{Hom}\left(W^{*}, V^{*}\right)$.
B. Extending the above setup: Since we have several vector spaces around, let's designate the above mapping from $\operatorname{Hom}(V, W)$ to $\operatorname{Hom}\left(W^{*}, V^{*}\right)$ as $\Omega_{V W}$. Correspondingly, $\Omega_{W X}$ is a mapping from $\operatorname{Hom}(W, X)$ to $\operatorname{Hom}\left(X^{*}, W^{*}\right)$: for every linear transformation M in $\operatorname{Hom}(W, X), \Omega_{W X}(M)$ is in $\operatorname{Hom}\left(X^{*}, W^{*}\right)$. With this setup, $M L$ (apply L, then apply M) is in $\operatorname{Hom}(V, X)$, and $\Omega_{V X}(M L)$ is in $\operatorname{Hom}\left(X^{*}, V^{*}\right)$. Show that $\Omega_{V X}(M L)=\Omega_{V W}(L) \Omega_{W X}(M)$.
C. Now, taking $V=W=X$ (and $V^{*}=W^{*}=X^{*}$), and putting A and B together: we have found a mapping Ω from $\operatorname{Hom}(V, V)$ to $\operatorname{Hom}\left(V^{*}, V^{*}\right)$ for which $\Omega(M L)=\Omega(L) \Omega(M)$. Show that, if U_{g} is a representation in V, then $\Omega\left(U_{g}^{-1}\right)$ is a representation in V^{*}, and find its character. For the latter, it is useful to show that the eigenvalues of $\Omega(U)$ are the same as the eigenvalues of U, for any unitary operator U.

Q2: Find a coordinate-free homomorphism between $V^{*} \otimes W$ and $\operatorname{Hom}(V, W)$. That is, for every $\varphi \otimes w$ in $V^{*} \otimes W$, find an element $\Phi=Z(\varphi \otimes w)$ in $\operatorname{Hom}(V, W)$, such that the mapping Z from $\varphi \otimes w$ to Φ is linear. (See Q2 of Homework \#3, Groups, Fields and Vector Spaces (2008-2009) for more of this type.)

Q3. Character tables. Consider the group of rotations and mirror-flips of a square. Specifically, designate the three vertices as a, b, c, and d (in clockwise order, with a at the top right), and the group operations as I for the identity; R and L for rotation right and left by $1 / 4$ of a cycle; Z for rotation by $1 / 2$ of a cycle, M_{V} for a mirror flip on the vertical axis (swapping $a \leftrightarrow d$ and $b \leftrightarrow c$); M_{H} for a mirror flip on the vertical axis (swapping $a \leftrightarrow b$ and $c \leftrightarrow d$), $M_{a c}$ a flip on the diagonal running from a to c (swapping $b \leftrightarrow d$), and $M_{b d}$ a flip on the diagonal running from b to d (swapping $a \leftrightarrow c$). Compute the characters at each of these elements for the representations described in the table below. Recall (from earlier weeks) that a permutation is "odd" if it can be generated by an odd number of pair-swaps, and even if it requires an even number of pair swaps.

Group element: $\quad I \quad$		R	L	Z	M_{V}	M_{H}	$M_{a c}$	$M_{b d}$

Representation:
E : the trivial representation
(all group elements map to 1)
P : Representation as
permutation matrices
on the letters $\{a, b, c, d\}$
S : Representation that maps
even permutations on $\{a, b, c, d\}$
$P_{\text {opp }}$: Representation as
permutation matrices on the two pairs of opposite sides
$P_{\text {diag }}$: Representation as
permutation matrices
on the two diagonals
C : Representation as
2×2 change-of-coordinate matrices in the plane
R :Regular representation

