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Characterization of the stability of equilibria

We derive a diagram that is useful for the characterization of the stability of equilibria in 2D
systems. Assume that we have a system of the form

dx

dt
= f(x, y),

dy

dt
= g(x, y),

(1)

which has an equilibrium at (xeq, yeq) = (0, 0). We get the stability of the equilibrium by linearizing
equation (1) around (xeq, yeq). The Jacobian is

J =

(
Dxf Dyf
Dxg Dyg

)
. (2)

The eigenvalues of the Jacobian evaluated at (xeq, yeq) determines the stability of the equilibrium.
In order to get the eigenvalues we calculate:

0 = det

(
Dxf − λ Dyf
Dxg Dyg − λ

)
= (Dxf − λ) (Dyg − λ)−DyfDxg

= λ2 − (Dxf +Dyg)λ+DxfDyg −DxgDyf

= λ2 − tr(J)λ+ det(J)

Hence the eigenvalues are

λ1,2 =
tr(J(xeq, yeq))

2
±
√

tr2(J(xeq, yeq))− 4 det(J(xeq, yeq)). (3)

Based on the relationship between trace and determinant we find 5 different regimes as shown in
Fig.(1). Above the parabola (given by tr2(J) = 4 det(J)) the eigenvalues are complex conjugate.
This indicates that trajectories will have a rotational component in the vicinity of the equilibrium.
In the upper right quadrant (det(J) > 0, tr(J) > 0) equilibria are stable, in the upper left quadrant
(det(J) > 0, tr(J) < 0) equilibria are unstable. In the lower halfplane (det(J) < 0) equilibria are
neither stable nor unstable, but have a stable direction and an unstable direction.
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Figure 1: Different stability regimes based on det(J) and tr(J).

First example: Olfactory path following model

In this section we study a simple toy model of a navigator that is tracking an odor trail in two
dimensions (e.g. a walking fly following an odor trail on a table). The model assumptions are, that
the navigator:

• travels at constant velocity v,

• has sensors at the end of two antennae of length l separated by angle 0 < θ < π,

• compares the concentration difference between the two sensors and turns towards the higher
concentration.

A sketch of the navigator is shown in Fig.(2). The first two equations of motion in Eq.(4) can be
derived by projecting the current heading direction on the axes and multiplying with the constant
velocity v. The third equation is just the difference of the odor concentration across antennae
multiplied by a gain factor α.

dx

dt
= v cosφ

dy

dt
= v sinφ

dφ

dt
= α(C(xL, yL)− C(xR, yR))

(4)

The coordinates of the antennae with respect to the fixed coordinate axes can be derived by
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Figure 2: Sketch of toy navigator.

trigonometry (no magic involved):

xL = x+ l cos

(
φ+

θ

2

)
,

yL = y + l sin

(
φ+

θ

2

)
,

xR = x+ l cos

(
φ− θ

2

)
,

yR = y + l sin

(
φ− θ

2

)
.

(5)

We need to specify the odor trail. Let’s assume that the odor concentration is constant in time
and spread out like a gaussian. We can align our coordinate system such that the trail is laid out
along one of the coordinate axes. For example, consider a gaussian profile in x-direction, which is
constant in the y-direction. Then, the odor concentration is given by:

C(x, y) = Cmax exp

[
− x2

2σ2

]
, (6)

and can be seen as a heatplot in Fig.(3). Substituting the equation for the odor trail (Eq.(6)) and
the location of the antennae Eq.(5) into the system 4 we get the full system:

dx

dt
= v cosφ,

dy

dt
= v sinφ,

dφ

dt
= αCmax

(
exp

[
−
(
x2 + l cos

(
φ+ θ

2

))2
2σ2

]
− exp

[
−
(
x2 + l cos

(
φ− θ

2

))2
2σ2

])
.

(7)

After specifying the initial condition (x0, y0, φ0) we could solve (integrate) the model and study its
behavior. However, an important thing to note is that the right-hand side of Eq.(7) is independent
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Figure 3: Concentration profile of the odor trail for Cmax = 10, σ = 1.

of y. Hence the dynamics of the navigator are independent of the value of y and the dynamics are
determined by the evolution of x and φ alone. In order to understand the behavior of the model,
we could ask the question:

Does the system have equilibria?

The full system cannot have equilibria, since v sin(φ) and v cos(φ) cannot be simultaneously zero
for v > 0. However, we can ask the question whether the two-dimensional system of dx

dt ,
dφ
dt has

equilibria.
The first equation needs to satisfy v cosφ = 0, hence φ = π/2 or φ = 3π/2. Substituting into

the equation for dφ/dt:

dφ

dt
= αCmax

{
exp

[
−
(
x+ l cos

(
θ
2 + π

2

))2
2σ2

]
− exp

[
−
(
x+ l cos

(
θ
2 −

π
2

))2
2σ2

]}

= αCmax

{
exp

[
−
(
x− l sin θ

2

)2
2σ2

]
− exp

[
−
(
x+ l sin θ

2

)2
2σ2

]}
,

(8)

where in the second step we just used the fact that ±π
2 shifts the cosine left or right, which turns it

into ∓ sin
(
θ
2

)
. Likewise, for φ = 3π/2, the minus sign in the numerator of the exponents switches.

Eq.(8) can only be zero when the exponents are equal. Expanding the numerator of the exponents
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yields (
x− l sin θ

2

)2

= x2 − 2xl sin
θ

2
+ l2 sin2 θ

2
,(

x+ l sin
θ

2

)2

= x2 + 2xl sin
θ

2
+ l2 sin2 θ

2
.

For fixed 0 < θ < π the two exponents can only be equal for x = 0.
The next thing we would like to know is what the stability of the equilibria is. The Jacobian is

of the form

J(x, φ) =

 0 −v sinφ

∂

∂x

(
dφ

dt

)
∂

∂φ

(
dφ

dt

) ,

hence tr(J) = ∂
∂φ

(
dφ
dt

)
and det(J) = v sinφ ∂

∂x

(
dφ
dt

)
. The algebra is cumbersome but straightfor-

ward. It turns out that:
tr J

(
0,
π

2

)
< 0,

tr2 J
(

0,
π

2

)
< 4 det J

(
0,
π

2

)
,

tr J

(
0,

3π

2

)
< 0,

tr2 J

(
0,

3π

2

)
< 4 det J

(
0,

3π

2

)
.

Hence both equilibria have complex conjugate eigenvalues with negative real part. Thus, in the
vicinity of the equilibria trajectories are spiraling in (see Fig.6). The spiraling motion near the
equilibria in the two-dimensional system correspond to trajectories that close in on the odor trail
in an oscillating fashion (Fig.5) and follow the odor trail in positive or negative y-direction.

For the figures the parameters are:

Cmax = 10

σ = 1

α = 1

l = 0.1

θ =
π

4
v = 1

and the initial conditions (x0, y0) = (2, 1) and φ0 = 0.9 · π2 and φ0 = 3.1 · π2 .
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Figure 4: Equilibria are located at the crosses of the two grey shaded nullclines. Both are stable
and trajectories within the basin of attraction spiral towards the equilibria.
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Figure 5: The equilibria of the 2D system of x and φ correspond to solution
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Second example: FitzHugh-Nagumo model

The FitzHugh-Nagumo equations have been derived as a simple toy model for a spiking neu-
ron1. The FitzHugh-Nagumo equations aim to capture the essential mathematical features that
the Hodgkin-Huxley model for the squid giant axon shows. The equations are

dv

dt
= Iapp + v − v3

3
− w,

dw

dt
= ε (v − αw + β) ,

(9)

where v represents the membrane voltage and w a recovery variable. Iapp is the applied current,
α and β are non-negative parameters and 0 < ε � 1 acts as a timescale separation between the
two equations. In order to get to grips with a nonlinear dynamical system it is common to check
for equilibria, and in 2D, plot the nullclines. For the analysis we’ll use ε = 0.01, α = 0.5, β = 2 and
we’ll consider variable applied currents Iapp.
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Figure 6: Nullclines. The intersection of the nullclines is an equilibrium.

For the given parameter values the two nullclines intersect at

veq = −1.859,

weq = 0.282,
(10)

which is the only equilibrium of the system. At the equilibrium tr J(veq, weq) < 0 and tr2 J(veq, weq) >
4 detJ(veq, weq). Hence, we have a stable equilibrium which acts as a sink without spiralling motion
of nearby trajectories.

There is a set of powerful numerical algorithms which allow to track equilibria and their stability
as one or more parameters (in this case Iapp) are varied.

1http://www.scholarpedia.org/article/FitzHugh-Nagumo
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Digression: Implicit Function Theorem and Numerical Continuation

Suppose that f is a continuously differentiable function where

f : Rn+m → Rm with f(x, y) = 0.

If Dyf is invertible at point (a, b) where f(a, b) = 0, then there is an open neighborhood around
(a, b) where y = g(x) and f(x, g(x)) = 0.

The implicit function theorem guarantees that y can be written as a function of x in the vicinity
of (a, b), although it does not provide a recipe for obtaining g(x). However, it does provide the
derivative via the calculation

0 = Dxf(x, g(x)) = Dxf + (Dyf)
∂g

∂x
,

∂g

∂x
= − (Dyf)−1Dxf.

Provided that the implicit function theorem is satisfied, an equilibrium can be tracked as one varies
a system parameter. We check for the FitzHugh-Nagumo equations if we can track the equilibrium
(veq, weq) as we vary Iapp. In order to this we look at the extended Jacobian

JIapp,(v,w) =

(
1 1− v2 −1
0 ε −εα

)
Hence if the submatrix J(v,w) is invertible, we can write the curve of equilibria, to first order, as(

veq
weq

)
= G(0) +

∂G(0)

∂Iapp
·∆Iapp.

This linear approximation is the basic idea for a set of powerful software packages that can follow
equilibria and other invariant structures (e.g. periodic orbits) as one varies a parameter. The most
well-known packages are

• AUTO, most widely used, fastest (written in Fortran and python),

• XPPAUT graphical user interface to AUTO (written in C, but no coding necessary),

• matcont (Matlab, most exhaustive bifurcation detection ability),

• coco (Matlab, very recent, promising).

None of these software packages is straightforward. If you would like to try to explore models
with continuation tools, my first recommendation would be XPPAUT. There is an online tutorial
available2.

The results of following the equilibrium points as we vary Iapp is shown in Fig.7. The left
panel shows the location and stability of veq. Note that the equilibrium exhibits two changes of
stability HB1 and HB2. At these Hopf bifurcations a parametric family of periodic orbits starts
or terminates. The numerical continuation software can switch to the branches of periodic orbits.
Switching to the branch of periodic, we can plot the amplitude (blue curve in the left panel) and
the period of the resulting periodic orbits (right panel).

Note that the analysis of equilibria is only locally valid. In other words, it does not tell you
about the behavior away from equilibrium solutions. For systems beyond two dimensions a global

2http://www.math.pitt.edu/˜bard/xpp/xpp.html
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Figure 7: Following the equilibrium as we increase Iapp shows two changes of stability at HB1 and
HB2, from which periodic orbits emanate. The blue curve shows the amplitude of the periodic
for a given value of Iapp. Numerical continuation software has the ability to switch the branch to
following the periodic orbit were they exist. The curve on the right shows how the period of the
periodic orbit changes as Iapp is varied.
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Figure 8: Simulation of the periodic at Iapp = 4. Left figure shows the periodic orbit in phase space
(in (v, w)-coordinates and the right figure shows the timeseries of the voltage variable.

analysis and a global understanding of the behavior of a model for different values of parameters is
very challenging. However, the FitzHugh-Nagumo equations are one of the few nonlinear dynamical
systems that can be globally understood. In order to do this, we look at a technique that allows
us to consider slow and fast components of the dynamics separately.
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Geometric singular perturbation theory

A thing to note is that we have the flexibility to rescale our time variable without changing the
dynamics. A useful rescaling is T = εt (I double checked). Then the derivatives become

dv

dt
=
dv

dT

dT

dt
= ε

dv

dT
,

dw

dt
= ε

dw

dT
.

And the FitzHugh-Nagumo equations can be equivalently written as

ε
dv

dT
= Iapp + v − v3

3
− w,

dw

dT
= (v − αw + β).

(11)

Equations (11) and (9) are equivalent, showing the system’s dynamics with differently scaled time
variables. However, if we treat Eq.(11) and Eq.(9) as singular perturbation problems (lim ε → 0)
we get different limits. The limit of Eq. (9) is

dv

dt
= Iapp + v − v3

3
− w,

dw

dt
= 0,

which has an intuitive interpretation. If trajectories are away from dv
dt ≈ 0 (where this limit

is justified) the variables w can be considered as constants, and the evolution of the system is
governed by the equation for v. The limit of Eq.(11) yields the differential-algebraic system

0 = Iapp + v − v3

3
− w,

dw

dT
= (v − αw + β),

which is a differential equation (dw/dT ) subject to an algebraic constraint. This system is only
meaningful on the so called critical manifold:

S0 =

{
(v, w) ∈ R2

∣∣∣∣Iapp + v − v3

3
− w = 0

}
In the vicinity of the critical manifold, the equation dw/dT governs the dynamics.

Fenichel’s theorem as stated below justifies mathematically that we can split this “slow-fast”
system into slow and fast components, and that the corresponding limits, explain the dynamics for
the model for ε > 0.

Fenichel theorem

Suppose that M0 ⊂ S0 is compact and normally hyperbolic, that means that all eigenvalues λ of

the Jacobian ∂f
∂v

∣∣∣
M0

satisfy Re(λ) 6= 0. Furthermore, suppose that the right-hand functions are

smooth, then there exists a manifold Mε within distance O(ε) of M0, which is locally invariant
under the flow.
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This theorem makes the idea rigorous that there is a lower dimensional slow manifold in the
system and in the vicinity of this manifold, the system evolves on a slower timescale. This theorem
is not restricted to two dimensions. For example the Hodgkin-Huxley equations have two fast and
two slow variables and correspondingly, the manifold where evolution is slow, is two-dimensional.

For the FitzHugh-Nagumo equations the critical manifold is normally hyperbolic everywhere but

at v = ±1, since Dv

(
Iapp + v − v3

3 − w
)

= 1− v2, which correspond to the knees of the nullcline.

Furthermore, the eigenvalue of the critical manifold is smaller than zero for |v| > 1 and larger than
zero for −1 < v < 1. Correspondingly the critical manifold has two attracting and a repelling
branch see Fig. 9. Using the singular perturbation approach, we can now explain the dynamics of
this model globally. Away from the critical manifold, trajectories are moving rapidly towards one
of the attracting branches of the critical manifold. Once the trajectory is on the critical manifold,
the slow dynamics take over and evolve the system along the critical manifold until it reaches a
stable equilibrium (for example when Iapp = 0) or reaches a knee and jumps to the other attracting
branch of the critical manifold. If the only equilibrium is an unstable equilibrium on the repelling
branch (see Fig.8), then the globally attracting state is a periodic orbit where the trajectory jumps
between the stable branches of the critical manifold and evolves slowly until it reaches the vicinity
of a knee.
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Figure 9: Critical manifold of the FitzHugh-Nagumo equations coincides with the nullcline for
dv/dt. The arrow indicate the stability of the different branches of the critical manifold.
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