
1 Dynamical Systems

We consider two types of dynamical systems:

1. Flows (I will use ordinary differential equations)

d~x
dt

= ~f(~x, t)
~x(0) = ~x0

(1)

2. Maps

~xn+1 = ~f(~xn)
~x0 is known

(2)

A fixed point for a flow is a point ~x0 ∈ R
N such that ~f(~x0) = 0. A fixed

point for a map is a point ~x ∈ R
N such that ~x = ~f(~x).

A major part of studying a dynamical system is determining the behavior
of the system near fixed points. This problem often reduces to the behavior
of a linear system:

d~x
dt

= A~x
~x(0) = ~x0

(3)

The only fixed point for this system is the fixed point at ~x = 0.
We need to define a few things. A vector space V contains vectors such

that if ~v ∈ V and ~w ∈ V then ~v+ ~w ∈ V and c~v ∈ V . We will define a vector
space as a span, where

V = span{~v1, ..., ~vM}

so that any vector in V can be written as a linear combination,

~v = c1~v1 + ...+ cM~vM .

If
M
∑

i

ci~vi = 0

only when c1 = c2 = ... = cM = 0 then the vectors ~vi are said to be linearly
independent.

An eigenvalue of A is a scalar, λ ∈ C, such that A~v = λ~v for some ~v ∈ V ,
which we call the eigenvector corresponding to λ.
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We will assume that the matrix A ∈ R
N×N has N linearly independent

eigenvectors, corresponding to N eigenvalues,

A~vi = λi~vi.

Let ~x(0) = ~x0. Since we have a full set of linearly independent eigenvec-
tors, we can decompose as

~x0 = η1~v1 + ...+ ηN~vN

and so we can write the linear system as

~x′ = A(η1(t)~v1 + ...+ ηN(t)~vN)

d

dt
η1(t)~v1 +

d

dt
ηN(t)~vN = A(η1(t)~v1 + ...+ ηN(t)~vN)

= η1(t)λ1~v1 + ...+ ηN(t)λN~vN

Since the eigenvectors are linearly independent, we can write this as N sep-
arate (uncoupled) differential equations,

d

dt
ηi(t) = λiηi(t)

which have solutions
ηi(t) = eλitηi(0).

If all of the eigenvalues are less than zero, then all of the solutions will go to
zero, and the fixed point at the origin is said to be asymptotically stable.

Often, the eigenvalues can be complex. Consider

(

x
y

)

′

=

[

a −b
b a

](

x
y

)

The matrix has eigenvalues a± ıb. We set z = x+ ıy and the above system
becomes

z′ = (a+ ıb)z.

Next, we put this into polar coordinates by letting z = reıθ. Substituting
into the previous equation

z′ = r′eıθ + ıθ′reıθ = (a+ ıb)reiθ
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and so
r′ + ıθ′r = (a+ ıb)r

Collecting like terms gives
r′ = ar
θ′ = b

So, if the real part of the eigenvalues are less than zero, the fixed point is
asymptotically stable, and the approach to the fixed point is a spiral - the
frequency of which is determined by the imaginary part of the eigenvalue.

To summarize, for a linear system of ODE’s

~x′ = A~x

the fixed point at the origin is stable is the real part of the eigenvalues of A are
negative. If the eigenvalues are complex, the approach will be a spiral. If the
eigenvalues are real, orbits will approach the origin along the eigenvectors,
where the relative sizes of the eigenvalues determines which dominates.

2 Bifurcations

I will make this section brief. First, the basic bifurcations that happen for
flows

• The fold bifurcation (or saddle node, or tangent bifurcation) has the
normal form (simplest system where the bifurcation can occur)

dx

dt
= α + x2.

At α = 0 there is a fold bifurcation. For α < 0 there are two fixed
points (one stable and one unstable). As α crosses zero, these two
fixed points collide and are annihilated. The conditions for the fold
bifurcation at α = 0 and x = 0 for the system

x′ = f(x, a)

are
f(0, 0) = 0

λ = fx(0, 0) = 0
fxx(0, 0) 6= 0
fα(0, 0) 6= 0
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The first of these conditions is the fixed point condition. The sec-
ond is the condition on the eigenvalue, and that a change in stability
(and more) is taking place. The third condition ensures that that f
is concave (either up or down, depending on which direction the bi-
furcation occurs) so that there is never a continuum of points. The
fourth condition ensures that the system changes as α crosses through
the bifurcation value.

The fold bifurcation is important in modeling, in particular conduc-
tance based modeling of neurons. It provides a mechanism to switch
from resting (at the stable fixed point) to firing (elimination of fixed
points so that the orbit escapes. The transition from resting to firing
via this mechanism is called type I excitability, and has some distinct
properties.

• The Hopf bifurcation has the normal form

x′

1 = αx1 − x2 − x1(x
2
1 + x2

2)
x′

2 = x1 + αx2 − x2(x
2
1 + x2

2)

which is a linear part with complex eigenvalues α± ı, and a nonlinear
part that is always pushing opposite of the variable - when x1 < then
x1(x

2
1 + x2

2) > 0 and vice-versa. If we set z = x1 + ıx2 then we get

z′ = (α + ı)z − z|z|2.

Finally, we set z = ρeıφ to get

ρ′ = ρ(α− ρ2)
φ′ = 1

When α < 0 then there is only one fixed point for ρ, the origin. For
α > 0 the fixed point at the origin is still there, but it is unstable and
there is now a periodic solution, which is stable.

The conditions for the Hopf bifurcation at a fixed point x = 0 and a
parameter α = 0 for the system

x′ = f(x, α)

are
f(0, 0) = 0
λ1,2(0) = ±ıω0
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The Hopf bifurcation provides another mechanism for excitability, where
a resting point can be excited onto a periodic solution, which for many
conductance based models of neurons corresponds to spiking. This
mechanism of excitability also exhibits distinct properties.

The bifurcations for maps occur when the eigenvalues cross the unit circle.
When, as a function of a parameter, and eigenvalue crosses at 1, a fold
bifurcation occurs. This fold is very similar to the fold for flows, also creating
or annihilating fixed points via some tangency. When the eigenvalue crosses
at some complex value of the unit circle, a Neimark-Sacker bifurcation occurs.
This is the discrete analog to the Hopf bifurcation for flows, where periodic
solutions are created and destroyed. Because these are so similar to the
corrsponding bifurcations for flows, I won’t spend any more time dealing
with them here.

Of note is that for maps, a periodic solution is possible for a one dimen-
sional system. This does not occur for flows. Because of this difference, there
is a bifurcation that is exclusive to maps - the flip bifurcation. This bifur-
cation occurs when the crossing of the unit circle occurs at −1. The normal
form for the flip bifurcation is

xn+1 = −(1 + β)η + η3

There will be an exercise on the flip bifurcation, so I won’t say any more
here.

3 Phase response curves, phase locking, and

averaging

Let X(t) be some quantity that is oscillating with period T . We define the
phase of the oscillator

θ =
t

T

so that, for example, θ = 3 would indicate that X has undergone three cycles.
We want to know what happens when the oscillator is subjected to an

external input during the phase. We are assuming that the coupling and
inputs are weak, which means that input to the oscillator only perturbs the
phase (rather than knocking the orbit off of the limit cycle into a qualitatively
different behavior).
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Suppose an input to the system, in the form of a δ pulse, arrives at phase
θ = θ0. The phase of the oscillator changes. Let T1(θ) be the time of the
next peak. We define the phase shift as

∆θ =
T − T1(θ)

T

If T1 arrives sooner than the regularly scheduled peak, then the phase has
been advanced. Conversely, if T1 is longer than T , then the phase has been
delayed. So, ∆θ < 0 corresponds to a phase delay, and ∆θ > 0 corresponds
to a phase advance. The graph of ∆θ, as a function of θ, is called the phase
response curve (PRC).

We are going to use the PRC to solve two problems. The first is whether
or not the oscillator will train to a periodic stimulus. Suppose there is an
input that arrives every P time units. Let θn be the phase of the oscillator
right before the nth stimulus. We want to know what the phase of the
oscillator will be right before the n+ 1th stimulus. Since we know the input
occurs at phase θn. we know that the phase right after the input will be

θn+ = θn +∆(θn).

To get to the next stimulus, just advance the phase by P/T :

θn+1 = θn +∆(θn) +
P

T
.

Now, we want to know whether or not the oscillator will train to this
periodic stimulus. We define M:N phase locking as M ”spikes” for every N
”inputs” (and it means exactly locked). Here, we will focus on M : 1 phase
locking (N 6= 1 is too hard). For each stimulus, we want the phase of the
oscillator to advance M times. So, we want θn+1 = θn +M . We solve

θ +M = θ +∆θ +
P

T

to get

∆θ̄ = M −
P

T
.

If this solution exists, then the oscillator does train to the stimulus in an
M : 1 fashion.
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The next step is to determine if the phase locked solution is stable. To
do this, linearize the map

∂f

∂θ

∣

∣

∣

∣

θ=θ̄

= 1 +∆′(θ̄)

and so if −2 < ∆′(θ̄) < 0 the phase locked solution will be stable. Note
here that since the phase response curve is a periodic function, if there is one
solution, then there has to be another (unless there is a tangency), and so
if there is a solution, then there is a stable solution (might not be the same
one).

The second problem that we address using the PRC is synchronization of
(weakly) coupled oscillators. We will consider these in terms of the phase of
the oscillators, writing

θ′1 = 1 +H(θ2 − θ1)
θ′2 = 1 +H(θ1 − θ2)

(4)

If we assume a pulse stimulus, as we have thus far, then when θ2 finishes
a phase and ”fires”, the phase θ1 will be altered. This happens as a step
function (the integral over a delta function). To avoid this discontinuity,
we find the integral of the the function H over an entire period, and then
average over the period, substituting something continuous for something
not continuous.

When θ2 crosses the firing threshold, we know that θ1 = T − (θ2 − θ1).
Let φ = θ2 − θ1. The phase shift of θ1 will be given by ∆(T − φ) - the PRC
evaluated at T − φ. To average this over an entire period, we write H as

H(φ) =
1

t

∫ T

0

∆(t)δ(t+ φ)dt.

We can determine the steady state phase relationship between the oscillators:

φ′ = θ′2 − θ′1 = H(−φ)−H(φ) = −2G(φ),

where G is the odd part of H. Since G is odd, G(0) = 0 and so a synchronous
solution exists. For it to be stable requires G′(0) > 0.

Let

V ∗(t) = lim
a→0

∆(t, a)

a
where a is the amplitude of the stimulus. The function V ∗ is called the infin-
tesimal PRC, which we can use to extrapolate the PRC values for different
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amplitude stimuli. We can use this to address the problem when the stimulus
is not a δ pulse. A common way to model synaptic inputs is be using an α
function, for example

α(t) = α0te
−βt.

The synaptic current is then written

α(t)(Vsyn − V (t)),

where Vsyn is the reversal potential. We can compute the coupling function

H(φ) =
1

T

∫ T

0

V ∗ (t)α(t+ φ)(Vsyn − V (t))dt

and so we can determine the steady state phase relationships between cells.
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