Groups, Fields, and Vector Spaces
Homework \#1 (2018-2019), Answers
Q1: Group or not a group?
Which of the following are groups? If a group, is it commutative? Finite or infinite? If infinite, is it discrete or continuous? If not a group, where does it fail?
A. The even integers $\{\ldots-6,-4,-2,0,2,4,6 \ldots\}$, under multiplication

Not a group. It fails to be a group because it doesn't contain the identity element
B. The set of all translations of 3-space, under composition

It's a commutative group; infinite; continuous
C. The set of all rotations of 3-space, under composition

It's a non-commutative group; infinite; continuous
D. The set of all $N \times N$ matrices with integer entries, under matrix addition
It's a commutative group, infinite, discrete
E. The set of all $N \times N$ matrices with integer entries, under matrix multiplication Not a group. Some elements, for example, the matrix with all 0 entries, don't have inverses.
F. The set of all 2×2 matrices with integer entries and determinant 1 , under matrix multiplication
It's a non-commutative group, infinite, discrete
G. Complex numbers, under addition

It's a commutative group, infinite, continuous
H. Complex numbers, under multiplication

Not a group. 0 has no inverse.
Q2. Modular arithmetic
For two integers x and y, we say $x=y(\bmod k)$ if x and y differ by an integer multiple of k. So, for example, $3+4=2(\bmod 5)$ and $6 * 9=10(\bmod 11)$.
A. Show that the integers $\{0,1, \ldots k-1\}$ form a group under addition (mod k). Addition $(\bmod k)$ inherits associativity and the identity element (0) from ordinary multiplication. To show that there's an additive inverse for an integer x, we note that $x+(k-x)=k$, so $x+(k-x)=0(\bmod k)$, so $k-x$ is the additive inverse of x.
B. For what integers k do the integers $\{1, \ldots k-1\}$ form a group under multiplication $(\bmod k)$?
It is a group if, and only if, k is prime.
Multiplication (mod k) inherits associativity and the identity element (1) from ordinary multiplication. To determine whether there's a multiplicative inverse for an integer x, we seek another integer y for which $x y=1(\bmod k)$. This means that $x y=1+k a$ for some integer a, or, that $x y-k a=1$. But if x and k have a common factor greater than 1 , say r, then $x y-k a$ also has r as a common factor, so $x y=1(\bmod k)$ cannot be solved, and x does not have an inverse. This means that if k is not a prime, then $\{1, \ldots, k-1\}$ is not a group under multiplication $(\bmod k)$.

Conversely, we can show that if k is a prime, then $\{1, \ldots, k-1\}$ is a group. One way to see this is as follows. Consider (for $1 \leq x \leq k-1$) all powers of $x, x^{1}, x^{2}, \ldots, x^{q}, \ldots$, and reduce each of them $(\bmod k)$ to numbers $<k$. Since there are only a finite number of possibilities in $1 \leq x \leq k-1$, eventually there have to be repeats. If this repeat occurs for the integer exponents a and $b(a<b)$, then $x^{a}=x^{b}(\bmod k)$. This in turn means that $x^{a}=x^{b}+N k$ for some integer N. Since k is prime, x cannot divide k, and therefore x^{a} must divide N. So $1=x^{b-a}+N^{\prime} k$ for some integer N^{\prime}, i.e., $x^{b-a}=1(\bmod k)$. This in turn means that x^{b-a-1} is the multiplicative inverse of x.

