Groups, Fields, and Vector Spaces
Homework \#1 (2018-2019)
Q1: Group or not a group?
Which of the following are groups? If a group, is it commutative? Finite or infinite? If infinite, is it discrete or continuous? If not a group, where does it fail?
A. The even integers $\{\ldots-6,-4,-2,0,2,4,6 \ldots\}$, under multiplication
B. The set of all translations of 3-space, under composition
C. The set of all rotations of 3-space, under composition
D. The set of all $N \times N$ matrices with integer entries, under matrix addition
E. The set of all $N \times N$ matrices with integer entries, under matrix multiplication
F. The set of all 2×2 matrices with integer entries and determinant 1 , under matrix multiplication
G. Complex numbers, under addition
H. Complex numbers, under multiplication

Q2. Modular arithmetic
For two integers x and y, we say $x=y(\bmod k)$ if x and y differ by an integer multiple of k. So, for example, $3+4=2(\bmod 5)$ and $6 * 9=10(\bmod 11)$.
A. Show that the integers $\{0,1, \ldots k-1\}$ form a group under addition $(\bmod k)$.
B. For what integers k do the integers $\{1, \ldots k-1\}$ form a group under multiplication (mod k)?

