
Groups, Fields, and Vector Spaces 
 
Homework #2 (2018-2019), Answers 
 
Q1: Building larger groups from smaller ones: the general setup 
 
Say H and K are groups, with identity elements He  and Ke  and group operations H  and K .  We 

define the “direct product” of H and K, denoted G H K= ´ , as follows. The elements of G are ordered 
pairs of elements of H and K, with a typical element denoted i i ig h k= ´  with ih  in H and ik  in K.  We 

define an operation G  in G by 1 1 2 2 1 2 1 2( ) ( ) ( ) ( )G H Kh k h k h h k k´ ´ = ´   , i.e., the elements of G 

combine component-wise, according to the operations in their respective groups.  
 
A note on terminology – direct product and direct sum – the terminology is very inconvenient.  The 
“direct product” of two groups is synonymous with the “direct sum”, which is denoted G H K= Å .  
“Direct sum” (or “direct product”) of groups are directly analogous to the “direct sum” or “direct 
product” construction for vector spaces.  But unfortunately the term “direct product” is usually used for 
groups, and the term “direct sum” is usually used for vector spaces. To avoid confusion with other 
standard presentations, we will use this unfortunate convention.  A further note – for combining an 
infinite number of groups (or vector spaces), there is a distinction between the direct sum and the direct 
product– but this is irrelevant to us. 
 
Show that the set of ig  form a group, G.  

 
We need to demonstrate associativity, the existence of an identity element, and the existence of inverses. 
 
G1: Associativity – this follows because the operation in G is component by component, and 
associativity holds in H and K.  Formally, we decompose, then carry out the group operations in the 
component groups, then re-compose. 
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where we have used the definition of the operation G . Since H and K are groups, their group operations 

are associative.  So ( ) ( ) ( ) ( )1 2 3 1 2 3 1 2 3 1 2 3( ) ( )H H K K H H K Kh h h k k k h h h k k k´ = ´        . 

We now invert the steps of the first line to reassemble elements in G: 
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G2: Identity.  We’ll show that the identity in G is given by G H Ke e e= ´ , where  He  and Ke  are the 

identities for H and K.  To see that it is a right identity, we consider an arbitrary g h k= ´ : 

 ( ) ( ) ( ) ( )G G G H K H H K Kg e h k e e h e k e h k g= ´ = ´ = ´ =     , where the next-to-last equality holds 

because  He  and Ke  are the identities for H and K.  Left identity works similarly. 

 



G3: Inverses.  We’ll show that the inverse of g h k= ´  is given by 1 1 1g h k- - -= ´ , where 1h-  and 1k-  
are the inverses of h  and k  in H and K, respectively: 

1 1 1 1 1( ) ( ) ( ) ( )G G H K H K Gg g h k h k h h k k e e e- - - - -= ´ ´ = ´ = ´ =    , where the next-to-last equality 

holds because 1h-  and 1k-  are the inverses of h  and k  in H and K. Left inverse works similarly. 
 
 
Q2: Building larger groups from smaller ones: examples  
 
Recall that p  is the group containing the elements  {0,1,..., 1}p- , with the group operation of 

addition mod p – the “cyclic group” of p elements.  We denote the group operation by + , and use xa  
as a shorthand for x x x+ + +  a total of a  times. 
 
A. How many elements are in  p q´  ? 

pq .  There are p elements in p  and q elements in q ;every combination produces a different element 

of  p q´   

B. Is 3 5´   isomorphic to 15 ? Hint:  let h be a non-identity element of  3 , and k be a non-identity 

element of 5 .  What is the order of h k´ ? 

Use the hint. We know that the order of h k´  must be a factor of the size of the group 3 5´  , which is 

15.  So its order must be either 1, 3, 5, or 15.  We also know that h is order 3 and k is order 5 (since their 
orders must divide the sizes of their groups). Using the shorthand of xa  for x x x+ + +  a total of a  
times, 

3
3( ) 3 3 3h k h k e k´ = ´ = ´ , which is not the identity.  Similarly, 

5
5( ) 5 5 2 5 2h k h k h k h e´ = ´ = ´ = ´  , also not the identity.  So h k´  must have order 15.  We now 

have an isomorphism j  from 3 5´  to 15   by mapping h k´  to 1.  This determines the entire 

mapping j  since each of the elements of 3 5´   must be equal to some ( )h ka ´  (by counting up the 

possibilities for ( )h ka ´ ). 
 
C. Is 3 4´   isomorphic to 12 ? 

Yes argument in B works here. 
 
D. Is 3 6´   isomorphic to 18 ? 

No.  Every element of 3 6´   has order at most 6, since 

3 6 3 6
6( ) 6 6 2(3 ) 6 2h k h k h k e e e e´ = ´ = ´ = ´ = ´    , the identity of 3 6´  . 

 
E. Formulate a hypothesis for when p q´   is isomorphic to pq , and (optionally) prove it. 

If p and q are relatively prime, p q´   is isomorphic to pq .  Sketch of proof:  if p and q are relatively 

prime, then the argument used in part B  shows that the order of h k´  is pq – since it must be both a 
multiple of p and a multiple of q. Conversely, say the largest common factor of p and q is some 1r > . 
Then p and q are both factors of /N pq r= .  Then the order of every element of  p q´   must be a 

factor of /N pq r= , and therefore no element of p q´   has order pq. On the other hand, the element 



1 of pq  has order pq.  So p q´    and pq  have intrinsically different structure, and cannot be 

isomorphic. 
  
Q3: Subgroups generated by the parity homomorphism 
 
A.  Consider the group of rotations and reflections of the square.  Note that it has 8 elements. Label the 
corners of the square by W, X, Y, and Z in cyclic order.  Which group elements correspond to even 
permutations, and which group elements correspond to odd permutations?  Verify that the subset 
corresponding to even permutations is a subgroup. 
 
Trivial motion: even permutation 
Rotation by 90 deg:  (WXYZ) or (WZYZ), odd permutations 
Rotation by 180 deg: (WY)(XZ), even permutation 
Mirror horizontally or mirror vertically: (WX)(YZ) or (WZ)(YX), even permutations 
Mirror on diagonals: (WY) and (XZ), odd permutations 
Subset of even permutations is the 180 deg rotation and the flips along the axes. 
 
B. Same setup as above,  but now label the edges of the square in cyclic order as p,q,r, and s.    Which 
group elements correspond to even permutations, and which group elements correspond to odd 
permutations?  Verify that the subset corresponding to even permutations is a subgroup. 
 
Trivial motion: even permutation 
Rotation by 90 deg:  (pqrs) or (psrq), odd permutations 
Rotation by 180 deg: (pr)(qs), even permutation 
Mirror horizontally and mirror vertically: (pr) or (qs), odd permutations 
Mirror on diagonals: (ps)(qr) and (pr)(qs), even permutations 
Subset of even permutations is the 180 deg rotation and the flips along the diagonals. 
 
C. Similar setup as above, but consider motions of a pentagon, with vertices labeled V, W, X, Y, and Z in 
cyclic order. 
 
Trivial motion: even permutation 
Rotation by 108 deg: (VWXYZ), (VZYXW), even permutations 
Rotation by 216 deg: (VXZWY), (VYWZX), even permutations 
Flip along one corner and one edge midpoint: (WZ)(XY), or (VX)(YZ), or (WY) (VZ), or (XZ)(VW), or 
(VY)(WX), all even permutations 
Subset of even permutations is the entire group. 


